欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 研究报告>
  • 工作总结>
  • 合同范本>
  • 心得体会>
  • 工作报告>
  • 党团相关>
  • 幼儿/小学教育>
  • 高等教育>
  • 经济/贸易/财会>
  • 建筑/环境>
  • 金融/证券>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > PPT文档下载
     

    运动控制系统4ppt课件.ppt

    • 资源ID:2708647       资源大小:1.16MB        全文页数:90页
    • 资源格式: PPT        下载积分:8
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录   微博登录  
    二维码
    微信扫一扫登录
    下载资源需要8
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    运动控制系统4ppt课件.ppt

    可逆调速系统和位置随动系统,电力拖动自动控制系统,第 4 章,本章在前三章的基础上进一步探讨可逆调速系统和位置随动系统。本课件选择可逆调速系统为主要内容。,4.1 可逆直流调速系统,内容提要 问题的提出 晶闸管-电动机系统的可逆线路 晶闸管-电动机系统的回馈制动 两组晶闸管可逆线路中的环流 有环流可逆调速系统 无环流可逆调速系统,4.1.0 问题的提出,有许多生产机械要求电动机既能正转,又能反转,而且常常还需要快速地起动和制动,这就需要电力拖动系统具有四象限运行的特性,也就是说,需要可逆的调速系统。,4.1.0 问题的提出(续),可逆电力电子线路,直流电动机改变转向的手段:,改变电枢端外供电源的极性,改变励磁电压的极性,直流电机可逆运转的电路解决方案:,4.1.1 单片微机控制的PWM可逆直流调速系统,不要求,4.1.2 可逆晶闸管-电动机系统,一. V-M系统的可逆线路 对应前面提到的实现电动机可逆运转的两种手段,V-M系统的可逆线路有两种方式: 电枢反接可逆线路; 励磁反接可逆线路。,1. 电枢反接可逆线路,电枢反接可逆线路的形式有多种,这里介绍如下3种方式: (1)接触器开关切换的可逆线路 (2)晶闸管开关切换的可逆线路 (3)两组晶闸管装置反并联可逆线路,(1) 接触器开关切换的可逆线路,KMF闭合,电动机正转; KMR闭合,电动机反转。,Ud,+Id,Id,(2)晶闸管开关切换的可逆线路,VT1、VT4导通,电动机正转; VT2、VT3导通,电动机反转。,晶闸管开关切换的可逆线路,Ud,Id,VT1,VT2,VT3,VT4,+Id,接触器切换可逆线路的特点,优点: 仅需一组晶闸管装置,简单、经济。 缺点:有触点切换,开关寿命短; 需自由停车后才能反向,时间长。 应用:不经常正反转的生产机械。,(3)两组晶闸管装置反并联可逆线路,Id,b) 运行范围,图4-2 两组晶闸管可控整流装置反并联可逆线路,两组晶闸管装置反并联可逆供电方式,- n,a) 电路结构,M,VR,VF,Id,-Id,+,-,-,+,-, 两组晶闸管装置可逆运行模式,电动机正转时,由正组晶闸管装置VF供电; 反转时,由反组晶闸管装置VR供电。 两组晶闸管分别由两套触发装置控制,都能灵活地控制电动机的起、制动和升、降速。 但是,不允许让两组晶闸管同时处于整流状态,否则将造成电源短路,因此对控制电路提出了严格的要求。,2. 励磁反接可逆线路,改变励磁电流的方向也能使电动机改变转向。与电枢反接可逆线路一样,可以采用接触器开关或晶闸管开关切换方式,也可采用两组晶闸管反并联供电方式来改变励磁方向。 励磁反接可逆线路见下图,电动机电枢用一组晶闸管装置供电,励磁绕组由另外的两组晶闸管装置供电。,励磁反接可逆供电方式,晶闸管反并联励磁反接可逆线路,VR,VF,Id,-Id,+,-,-,+,-,主电路,可逆励磁电路, 励磁反接的特点,优点:供电装置功率小。 由于励磁功率仅占电动机额定功率的15%,因此,采用励磁反接方案,所需晶闸管装置的容量小、投资少、效益高。 缺点:改变转向时间长。 由于励磁绕组的电感大,励磁反向的过程较慢;又因电动机不允许在失磁的情况下运行,因此系统控制相对复杂一些。,小 结,(1)V-M系统的可逆线路可分为两大类: 电枢反接可逆线路电枢反接反向过程快,但需要较大容量的晶闸管装置; 励磁反接可逆线路励磁反接反向过程慢,控制相对复杂,但所需晶闸管装置容量小。,(2)每一类线路又可用不同的换向方式: 接触器切换线路适用于不经常正反转的生产机械; 晶闸管开关切换线路适用于中、小功率的可逆系统; 两组晶闸管反并联线路适用于各种可逆系统。,二. 晶闸管-电动机系统的回馈制动,1. 晶闸管装置的整流和逆变状态 在两组晶闸管反并联线路的V-M系统中,晶闸管装置可以工作在整流或有源逆变状态。 在电流连续的条件下,晶闸管装置的平均理想空载输出电压为 (4-1),当控制角为 90°,晶闸管装置处于整流状态; 当控制角为 90°,晶闸管装置处于逆变状态。,因此在整流状态中,Ud0 为正值;在逆变状态中,Ud0 为负值。为了方便起见,定义逆变角 = 180 ,则逆变电压公式可改写为 Ud0 = Ud0 max cos,(4-2),2. 单组晶闸管装置的有源逆变,单组晶闸管装置供电的V-M系统在拖动位能型的负载时也可能出现整流和有源逆变状态。,a)整流状态:提升重物, 90°,Ud0 E,n 0 由电网向电动机提供能量。,Id,b)逆变状态:放下重物 90°,Ud E,n 0 由电动机向电网回馈能量。注意电流方向!,Id,进入回馈的条件: 装置处于逆变 E 与Ud同极性 Ud E,c)机械特性,整流状态: 电动机工作于第1象限; 逆变状态: 电动机工作于第4象限。,TL,图4-3 单组V-M系统带起重机类型负载时的整流和逆变状态,3. 两组晶闸管装置反并联的整流和逆变,现以正组晶闸管装置整流和反组晶闸管装置逆变为例,说明两组晶闸管装置反并联可逆线路的工作原理。,a) 正组晶闸管装置VF整流,VF处于整流状态: 此时, f 90°,Ud0f E, n 0 电机从电路吸收能量作电动运行。,P,Id,b) 反组晶闸管装置VR逆变,当电动机需要回馈制动时,由于电机反电动势的极性未变,要回馈电能必须产生反向电流,而反向电流是不可能通过VF流通的。这时,可以利用控制电路切换到反组晶闸管装置VR,并使它工作在逆变状态。,VR处于逆变状态: 此时,r 90°,E |Ud0r|, n 0 电机电枢输出电能实现回馈制动。,P,Id,c)机械特性范围,c) 机械特性运行范围, 整流状态: V-M系统工作在第一象限。 逆变状态: V-M系统工作在第二象限。,4. V-M系统的四象限运行,在可逆调速系统中,正转运行时可利用反组晶闸管实现回馈制动,反转运行时同样可以利用正组晶闸管实现回馈制动。这样,采用两组晶闸管装置的反并联,就可实现电动机的四象限运行。 归纳起来,可将可逆线路正反转时晶闸管装置和电机的工作状态列于表4-1中。,表4-1 V-M系统反并联可逆线路的工作状态, 反并联的晶闸管装置的其他应用,即使是不可逆的调速系统,只要是需要快速的回馈制动,常常也采用两组反并联的晶闸管装置,由正组提供电动运行所需的整流供电,反组只提供逆变制动。,三. 可逆V-M系统中的环流问题,1. 环流及其分类 环流的定义: 采用两组晶闸管反并联的可逆V-M系统,称不流经负载而直接在两组晶闸管之间流通的电流为环流。, 环流的形成,Id,Ic,Ic 环流 Id 负载电流, 环流的危害和利用,危害:一般地说,这样的环流对负载无益,加重加重了晶闸管和变压器的负担,消耗功率,环流太大时会导致晶闸管损坏,因此应该予以抑制或消除。 利用:只要合理的对环流进行控制,保证晶闸管的安全工作,可以利用环流作为流过晶闸管的基本负载电流,使电动机在空载或轻载时可工作在晶闸管装置的电流连续区,以避免电流断续引起的非线性对系统性能的影响。, 环流的分类,(1)静态环流:两组可逆线路在一定控制角下稳定工作时出现的环流。又分为两类: 直流平均环流由晶闸管装置输出的直流平均电压所产生的环流称作直流平均环流。 瞬时脉动环流两组晶闸管输出的直流平均电压差为零,但因电压波形不同,瞬时电压差仍会产生脉动的环流,称作瞬时脉动环流。,环流的分类(续),(2)动态环流:仅在可逆V-M系统处于过渡过程中出现的环流。 这里,主要分析静态环流的形成原因,并讨论其控制方法和抑制措施。,2. 直流平均环流与配合控制,在两组晶闸管反并联的可逆V-M系统中,如果让正组VF 和反组VR都处于整流状态,两组的直流平均电压正负相连,必然产生较大的直流平均环流。直流平均环流必须抑制,其措施有: 采用封锁触发脉冲的方法,在任何时候,只允许一组晶闸管装置工作; 采用配合控制的策略,使一组晶闸管装置工作在整流状态,另一组则工作在逆变状态。,(1)配合控制原理,为了防止产生直流平均环流,应该当正组处于整流状态时,强迫让反组处于逆变状态,且控制其幅值与之相等,用逆变电压把整流电压 顶住,则直流平均环流为零。于是 Ud0r = Ud0f 由式(4-1), Ud0f = Ud0 max cosf Ud0f = Ud0 max cosr 其中 f 和r 分别为VF和VR的控制角。,由于两组晶闸管装置相同,两组的最大输出电压 Ud0max 是一样的,因此,当直流平均环流为零时,应有 cos r = cos f 或 r + f = 180 (4-3) 如果反组的控制用逆变角 r 表示,则 f = r (4-4),由此可见,按照式(4-4)来控制就可以消除直流平均环流,这称作 = 配合控制。为了更可靠地消除直流平均环流,可采用,(2)配合控制方法,为了实现配合控制,可将两组晶闸管装置的触发脉冲零位都定在90°,即 当控制电压 Uc= 0 时,使 f = r = 90°,此时 Ud0f = Ud0r = 0 ,电机处于停止状态。 增大控制电压Uc 移相时,只要使两组触发装置的控制电压大小相等符号相反就可以了。,(3) = 配合控制电路,GTF-正组触发装置 GTR-反组触发装置 AR-反号器,(4) = 配合控制特性, = 配合控制系统的移相控制特性示于下图。移相时,如果一组晶闸管装置处于整流状态,另一组便处于逆变状态,这是指控制角的工作状态而言的。,图4-7 配合控制移相特性, = 移相控制特性(续),- Ucm,Uc,一组晶闸管装置处于整流状态,另一组便处于逆变状态,逆变区,整流区,(5) = 控制的工作状态,待逆变状态 实际上,这时逆变组除环流外并未流过负载电流,也就没有电能回馈电网,确切地说,它只是处于“待逆变状态”,表示该组晶闸管装置是在逆变角控制下等待工作。 逆变状态 只有在制动时,当发出信号改变控制角后,同时降低了整流电压和逆变电压的幅值,一旦电机反电动势 E |Ud0r| = |Ud0f|,整流组电流将被截止,逆变组才真正投入逆变工作,使电机产生回馈制动,将电能通过逆变组回馈电网。, = 控制的工作状态(续),待整流状态 同样,当逆变组工作时,另一组也是在等待着整流,可称作处于“待整流状态”。 所以,在 = 配合控制下,负载电流可以迅速地从正向到反向(或从反向到正向)平滑过渡,在任何时候,实际上只有一组晶闸管装置在工作,另一组则处于等待工作的状态。,(6)最小逆变角限制,为了防止晶闸管装置在逆变状态工作中逆变角太小而导致换流失败,出现“逆变颠覆”现象,必须在控制电路中采用限幅作用,形成最小逆变角min保护。与此同时,对 角也实施 min 保护,以免出现 Ud0f Ud0r 而产生直流平均环流。通常取,3. 瞬时脉动环流及其抑制,(1) 瞬时的脉动环流产生的原因: 采用配合控制已经消除了直流平均环流,但是,由于晶闸管装置的输出电压是脉动的,造成整流与逆变电压波形上的差异,仍会出现瞬时电压的情况,从而仍能产生瞬时的脉动环流。这个瞬时脉动环流是自然存在的,因此配合控制有环流可逆系统又称作自然环流系统。,(3)瞬时脉动环流的抑制,直流平均环流可以用配合控制消除,而瞬时脉动环流却是自然存在的。为了抑制瞬时脉动环流,可在环流回路中串入电抗器,叫做环流电抗器,或称均衡电抗器,如图4-9a中的 Lc1和 Lc2 。 环流电抗的大小可以按照把瞬时环流的直流分量限制在负载额定电流的5%10%来设计。, 环流电抗器的设置,三相零式反并联可逆线路必须在正、反两个回路中各设一个环流电抗器,因为其中总有一个电抗器会因流过直流负载电流而饱和,失去限流作用。 例如: 在图 4-9a 中当正组VF整流时,流过负载电流,使 Lc1 铁芯饱和,只能依靠在逆变回路中的 Lc2 限制环流。 同理,当反组VR整流时,只能依靠 Lc1限制环流。,在三相桥式反并联可逆线路中,由于每一组桥又有两条并联的环流通道,总共要设置4个环流电抗器。,1,2,M,VF,VR,a,b,c,A,B,C,-,环流电抗器的设置(续),环流电抗器的设置(续),在三相桥式交叉连接可逆线路中,由于电源独立,每一组桥只有一条环流通道,因此只要设置2个环流电抗器。,四. = 配合控制的有环流可逆V-M系统, 主电路,主电路采用两组三相桥式晶闸管装置反并联的可逆线路,其中: 正组晶闸管VF,由GTF控制触发, 正转时,VF整流; 反转时,VF逆变。 反组晶闸管VR,由GTR控制触发, 反转时,VR整流; 正转时,VR逆变。, 给定与检测电路(转速),根据可逆系统正反向运行的需要,给定电压、转速反馈电压、电流反馈电压都应该能够反映正和负的极性。这里 给定电压:正转时,KF闭合, U*n=“+”; 反转时,KR闭合, U*n=“-”。 转速反馈:正转时, Un=“-”, 反转时, Un=“+”。, 给定与检测电路(电流),电流反馈电压: 正转时,Ui =“+”; 反转时,Ui =“-”。 注意:由于电流反馈应能反映极性,因此图中的电流互感器需采用直流电流互感器或霍尔变换器,以满足这一要求。, 控制电路,控制电路采用典型的转速、电流双闭环系统,其中: 转速调节器ASR控制转速,设置双向输出限幅电路,以限制最大起制动电流; 电流调节器ACR控制电流,设置双向输出限幅电路,以限制最小控制角 min 与最小逆变角 min 。,2. 控制方式,采用同步信号为锯齿波的触发电路时,移相控制特性是线性的,两组触发装置的控制特性如图所示。,反转时: 0, r 90°,VR整流: Ud0r =“+”; Uc 0, f 90°,VF逆变: Ud0f =“-”。,正转时: Uc 0, f 90°,VF整流: Ud0f =“+”; 0, r 90°,VR逆变: Ud0r =“-”。,停转时:Uc = 0, r = f = 90°, Ud0f = Ud0r = 0。, AR =“-” VR逆变,3. 工作过程,正向稳态运行过程: KF闭合, U*n=“+” U*i=“-” Uc =“+”,电动机正向运行,VF整流, ,正向稳态运行过程系统状态,有环流系统正向运行过程,-,-,P,n,制动过程(动态过程),整个制动过程可以分为两个主要阶段,其中还有一些子阶段。主要阶段分为: I. 本组逆变阶段; II.它组制动阶段。 现以正向制动为例,说明有环流可逆调速系统的制动过程。,I. 本组逆变阶段,在这阶段中,电流由正向负载电流下降到零,其方向未变,因此只能仍通过正组VF流通,具体过程如下: 发出停车(或反向)指令后,转速给定电压突变为零(或负值); ASR输出跃变到正限幅值 +U*im ; ACR输出跃变成负限幅值 -Ucm ; VF由整流状态很快变成逆变状态,同时反组VR由待逆变状态转变成待整流状态。,在VF-M回路中,由于VF变成逆变状态,极性变负,而电机反电动势 E 极性未变,迫使电流迅速下降,主电路电感迅速释放储能,企图维持正向电流,这时,大部分能量通过 VF 回馈电网,所以称作“本组逆变阶段”。由于电流的迅速下降,这个阶段所占时间很短,转速来不及产生明显的变化,其波形图见图4-10中的阶段 I 。,本组逆变过程系统状态,Id,-,-,.它组制动阶段,当主电路电流下降过零时,本组逆变终止,第 I 阶段结束,转到反组 VR 工作,开始通过反组制动。从这时起,直到制动过程结束,统称“它组制动阶段”。 它组制动阶段又可分成三个子阶段: 它组建流子阶段; 它组逆变子阶段; 反向减流子阶段。,它组建流子阶段,(1)Id 过零并反向(电机反电势作用使电流反向),直至到达 - Idm 以前,ACR并未脱离饱和状态,其输出仍为 - Ucm 。这时,VF和 VR 输出电压的大小都和本组逆变阶段一样,但由于本组逆变停止,电流变化延缓, 的数值略减,使:,(2)反组VR由“待整流”进入整流,向主电路提供 Id 。 由于反组整流电压 Ud0r 和反电动势 E 的极性“顺联”,反向电流很快增长,电机处于反接制动状态,转速明显地降低,因此,又可称作“它组反接制动状态”。,反接制动过程系统状态,Id,-,-,它组逆变子阶段,当反向电流达到 Idm 并略有超调时,ACR输出电压 Uc 退出饱和,其数值很快减小,又由负变正,然后再增大,使VR回到逆变状态,而 VF 变成待整流状态。此后,在ACR的调节作用下,力图维持接近最大的反向电流 Idm ,因而,它组回馈制动过程系统状态,-,-,电机在恒减速条件下回馈制动,把动能转换成电能,其中大部分通过 VR 逆变回馈电网,过渡过程波形为图4-10中的第 II2 阶段,称作“它组回馈制动阶段”或“它组逆变阶段”。 由图可见,这个阶段所占的时间最长,是制动过程中的主要阶段。,反向减流子阶段,在这一阶段,转速下降得很低,无法再维持 -Idm,于是电流立即衰减。 在电流衰减过程中,电感 L上的感应电压 LdId/dt 支持着反向电流,并释放出存储的磁能,与电动机断续释放出的动能一起通过VR逆变回馈电网。 如果电机随即停止,整个制动过程到此结束。,M,VR,VF,-1,AR,GTR,GTF,Uc,ASR,ACR,U*n,+,-,Un,Ui,U*i,+,-,TG,Lc1,Lc2,Lc3,Lc4,TM,TA,Ld,Uc,Id,反向减流过程系统状态,-,-, 制动过程系统响应曲线,-Idm,IdL,-Ucm,E,图4-10 配合控制有环流可逆直流调速系统正向制动过渡过程波形,反向起动,自学内容, 有环流系统可逆运行曲线,4.1.3 无环流控制的可逆晶闸管-电动机系统,概述 有环流可逆系统虽然具有反向快、过渡平滑等优点,但设置几个环流电抗器终究是个累赘。因此,当工艺过程对系统正反转的平滑过渡特性要求不很高时,特别是对于大容量的系统,常采用既没有直流平均环流又没有瞬时脉动环流的无环流控制可逆系统。, 系统分类 按照实现无环流控制原理的不同,无环流可逆系统又有大类: 逻辑控制无环流系统; 错位控制无环流系统。, 控制原理,逻辑控制的无环流可逆系统 当一组晶闸管工作时,用逻辑电路(硬件)或逻辑算法(软件)去封锁另一组晶闸管的触发脉冲,使它完全处于阻断状态,以确保两组晶闸管不同时工作,从根本上切断了环流的通路,这就是逻辑控制的无环流可逆系统。,错位控制的无环流可逆系统,在错位控制的无环流可逆系统中,同样采用配合控制的触发移相方法,但两组脉冲的关系是 r + f = 300 °,甚至是 r + f = 360 °,也就是说,初始相位整定在 r = f = 150 °或180°。 这样,当待逆变组的触发脉冲来到时,它的晶闸管已经完全处于反向阻断状态,不可能导通,当然就不会产生瞬时脉动环流了。 鉴于目前错位控制的无环流可逆系统实际应用已经较少,本课程不再详细介绍。,1. 逻辑控制的无环流可逆系统,本节将着重讨论逻辑控制的无环流可逆系统的系统结构、控制原理和电路设计。 (1)系统的组成 逻辑控制的无环流可逆调速系统(以下简称“逻辑无环流系统”)的原理框图示于下图该系统结构的特点为:, 逻辑控制无环流系统结构,图4-11 逻辑控制无环流可逆调速系统原理框图,系统结构的特点,主电路采用两组晶闸管装置反并联线路; 由于没有环流,不用设置环流电抗器; 仍保留平波电抗器 Ld ,以保证稳定运行时电流波形连续; 控制系统采用转速、电流双闭环方案; 电流环分设两个电流调节器,1ACR用来控制正组触发装置GTF,2ACR控制反组触发装置GTR;,2无环流逻辑控制环节,不要求,本章小结,本章主要讨论直流调速系统的可逆运行问题: 由于V-M系统中晶闸管的单向导电性,需要设置可逆线路来使电动机反向运行或制动,主要的可逆线路有 电枢反接可逆线路; 励磁反接可逆线路; 两组晶闸管反并联是大功率传动系统的主要供电方式。,在两组晶闸管反并联线路中,会出现环流,为此,需要采取措施抑制环流 设置环流电抗器; 采取 = 配合控制方式; 采取封锁触发脉冲的方式,使两组晶闸管不能同时工作。,根据控制环流方式,直流可逆调速系统分为 有环流可逆调速系统; 无环流可逆调速系统。,学习要点: (1)掌握可逆线路的基本结构; (2)掌握V-M系统反并联可逆线路4象限运行的各种工作状态; (3)掌握可逆系统的结构、工作原理、控制方式和性能。,

    注意事项

    本文(运动控制系统4ppt课件.ppt)为本站会员(本田雅阁)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    经营许可证编号:宁ICP备18001539号-1

    三一文库
    收起
    展开