欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 研究报告>
  • 工作总结>
  • 合同范本>
  • 心得体会>
  • 工作报告>
  • 党团相关>
  • 幼儿/小学教育>
  • 高等教育>
  • 经济/贸易/财会>
  • 建筑/环境>
  • 金融/证券>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > DOC文档下载
     

    第七章线粒体与叶绿体.doc

    • 资源ID:2715200       资源大小:1.04MB        全文页数:47页
    • 资源格式: DOC        下载积分:6
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录   微博登录  
    二维码
    微信扫一扫登录
    下载资源需要6
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第七章线粒体与叶绿体.doc

    第七章 线粒体与叶绿体第一节 线粒体1890年R. Altaman首次发现线粒体,命名为bioblast,以为它可能是共生于细胞内独立生活的细菌。1898年Benda首次将这种颗命名为mitochondrion。1900年L. Michaelis用Janus Green B对线粒体进行染色,发现线粒体具有氧化作用。Green(1948)证实线粒体含所有三羧酸循环的酶,Kennedy和Lehninger(1949)发现脂肪酸氧化为CO2的过程是在线粒体内完成的,Hatefi等(1976)纯化了呼吸链四个独立的复合体。Mitchell(19611980)提出了氧化磷酸化的化学偶联学说。一、结构(一)形态与分布线粒体一般呈粒状或杆状,但因生物种类和生理状态而异,可呈环形,哑铃形、线状、分杈状或其它形状。主要化学成分是蛋白质和脂类,其中蛋白质占线粒体干重的65-70%,脂类占25-30%。一般直径0.51m,长1.53.0m,在胰脏外分泌细胞中可长达1020m,称巨线粒体。数目一般数百到数千个,植物因有叶绿体的缘故,线粒体数目相对较少;肝细胞约1300个线粒体,占细胞体积的20%;单细胞鞭毛藻仅1个,酵母细胞具有一个大型分支的线粒体,巨大变形中达50万个;许多哺乳动物成熟的红细胞中无线粒体。通常结合在维管上,分布在细胞功能旺盛的区域。如在肝细胞中呈均匀分布,在肾细胞中靠近微血管,呈平行或栅状排列,肠表皮细胞中呈两极性分布,集中在顶端和基部,在精子中分布在鞭毛中区。线粒体在细胞质中可以向功能旺盛的区域迁移,微管是其导轨,由马达蛋白提供动力。(二)超微结构线粒体由内外两层膜封闭,包括外膜、内膜、膜间隙和基质四个功能区隔(图7-1、7-2)。在肝细胞线粒体中各功能区隔蛋白质的含量依次为:基质67%,内膜21%,外8%膜,膜间隙4%。图7-1线粒体的TEM照片图7-2线粒体结构模型1、外膜 (out membrane)含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的亲水通道,允许分子量为5KD以下的分子通过,1KD以下的分子可自由通过。标志酶为单胺氧化酶。2、内膜 (inner membrane)含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。通透性很低,仅允许不带电荷的小分子物质通过,大分子和离子通过内膜时需要特殊的转运系统。如:丙酮酸和焦磷酸是利用H+梯度协同运输。线粒体氧化磷酸化的电子传递链位于内膜,因此从能量转换角度来说,内膜起主要的作用。内膜的标志酶为细胞色素C氧化酶。内膜向线粒体基质褶入形成嵴(cristae),嵴能显著扩大内膜表面积(达510倍),嵴有两种类型:板层状(图7-1)、管状(图7-3),但多呈板层状。图7-3 管状嵴线粒体嵴上覆有基粒(elementary particle),基粒由头部(F1偶联因子)和基部(F0偶联因子)构成,F0嵌入线粒体内膜。3、膜间隙(intermembrane space)是内外膜之间的腔隙,延伸至嵴的轴心部,腔隙宽约6-8nm。由于外膜具有大量亲水孔道与细胞质相通,因此膜间隙的pH值与细胞质的相似。标志酶为腺苷酸激酶。4、基质(matrix)为内膜和嵴包围的空间。除糖酵解在细胞质中进行外,其他的生物氧化过程都在线粒体中进行。催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶。基质具有一套完整的转录和翻译体系。包括线粒体DNA(mtDNA),70S型核糖体,tRNAs 、rRNA、DNA聚合酶、氨基酸活化酶等。基质中还含有纤维丝和电子密度很大的致密颗粒状物质,内含Ca2+、Mg2+、Zn2+等离子。二、氧化磷酸化的分子基础(一)电子载体呼吸链电子载体主要有:黄素蛋白、细胞色素、铜原子、铁硫蛋白、辅酶Q等。1.        NAD即烟酰胺嘌呤二核苷酸(nicotinamide adenine dinucleotide,图7-4),是体内很多脱氢酶的辅酶,连接三羧酸循环和呼吸链,其功能是将代谢过程中脱下来的氢交给黄素蛋白。图7-4 NAD的结构和功能(NAD:RH,NADP:RPO3H2)2.        黄素蛋白:含FMN(图7-5)或FAD(图7-6)的蛋白质,每个FMN或FAD可接受2个电子2个质子。呼吸链上具有FMN为辅基的NADH脱氢酶,以FAD为辅基的琥珀酸脱氢酶。图7-5 FMN (flavin mononucleotide) 的分子结构图7-6 FAD ( flavin adenine dinucleotide)的分子结构3.        细胞色素:分子中含有血红素铁(图7-7),以共价形式与蛋白结合,通Fe3+、Fe2+形式变化传递电子,呼吸链中有5类,即:细胞色素a、a3、b、c、c1,其中a、a3含有铜原子。图7-7 血红素c的结构4.        三个铜原子:位于线粒体内膜的一个蛋白质上,形成类似于铁硫蛋白的结构,通过Cu2+、Cu1+的变化传递电子。5.        铁硫蛋白:在其分子结构中每个铁原子和4个硫原子结合,通过Fe2+、Fe3+互变进行电子传递,有2Fe-2S和4Fe-4S两种类型(图7-8)。图7-8 铁硫蛋白的结构(引自Lodish等1999)6.        辅酶Q:是脂溶性小分子量的醌类化合物,通过氧化和还原传递电子(图7-9)。有3种氧化还原形式即氧化型醌Q,还原型氢醌(QH2)和介于两者之者的自由基半醌(QH)。图7-9 辅酶Q(二)呼吸链的复合物利用脱氧胆酸(deoxycholate,一种离子型去污剂)处理线粒体内膜、分离出呼吸链的4种复合物,即复合物、和,辅酶Q和细胞色素C不属于任何一种复合物。辅酶Q溶于内膜、细胞色素C位于线粒体内膜的C侧,属于膜的外周蛋白。1、复合物即NADH脱氢酶,哺乳动物的复合物由42条肽链组成,呈L型,含有一个FMN和至少6个铁硫蛋白,分子量接近1MD,以二聚体形式存在,其作用是催化NADH的2个电子传递至辅酶Q,同时将4个质子由线粒体基质(M侧)转移至膜间隙(C侧)。电子传递的方向为:NADHFMNFe-SQ,总的反应结果为:NADH + 5H+M + QNAD+ + QH2 + 4H+C2、复合物即琥珀酸脱氢酶,至少由4条肽链组成,含有一个FAD,2个铁硫蛋白,其作用是催化电子从琥珀酸转至辅酶Q,但不转移质子。电子传递的方向为:琥珀酸FADFe-SQ。反应结果为:琥珀酸+Q延胡索酸+QH23、复合物 即细胞色素c还原酶,由至少11条不同肽链组成,以二聚体形式存在,每个单体包含两个细胞色素b(b562、b566)、一个细胞色素c1和一个铁硫蛋白。其作用是催化电子从辅酶Q传给细胞色素c,每转移一对电子,同时将4个质子由线粒体基质泵至膜间隙。总的反应结果为: 2还原态cyt c1 + QH2 + 2 H+M2氧化态cyt c1 + Q+ 4H+C 复合物的电子传递比较复杂,和“Q循环”有关(图7-10)。辅酶Q能在膜中自由扩散,在内膜C侧,还原型辅酶Q(氢醌) 将一个电子交给Fe-S细胞色素c1细胞色素c,被氧化为半醌,并将一个质子释放到膜间隙,半醌将电子交给细胞色素b566b562,释放另外一个质子到膜间隙。细胞色素b566得到的电子为循环电子,传递路线为:半醌b566b562辅酶Q。在内膜M侧,辅酶Q可被复合体(复合体)或细胞色素b562还原为氢醌。一对电子由辅酶Q到复合物的电子传递过程中,共有四个质子被转移到膜间隙,其中两个质子是辅酶Q转移的。图7-10 Q循环示意图 引自Lodish等1999 4、复合物 即细胞色素c氧化酶,以二聚体形式存在,其作用是将从细胞色素c接受的电子传给氧,每转移一对电子,在基质侧消耗2个质子,同时转移2个质子至膜间隙。每个单体由至少13条不同的肽链组成,分为三个亚单位:亚单位I(subunit I):包含两个血红素(a1、a3)和一个铜离子(CuB),血红素a3和CuB形成双核的Fe-Cu中心。亚单位(subunit ),包含两个铜离子(CuA)构成的双核中心,其结构与2Fe-2S相似。亚单位(subunit )的功能尚不了解。电子传递的路线为:cyt cCuAheme aa3- CuBO2,总的反应结果为: 4还原态cyt c + 8 H+M + O24氧化态cyt c + 4H+C + 2H2O(三)两条主要的呼吸链复合物、组成主要的呼吸链,催化NADH的脱氢氧化,复合物、组成另一条呼吸链,催化琥珀酸的脱氢氧化(图7-11)。对应于每个复合物,大约需要3个复合物,7个复合物,任何两个复合物之间没有稳定的连接结构,而是由辅酶Q和细胞色素c这样的可扩散性分子连接。呼吸链各组分有序,使电子按氧化还原电位从低向高传递,能量逐级释放,呼吸链中的复合物、都是质子泵,可将质子有机质转移到膜间隙,形成质子动力势(proton-motive force),驱动ATP的合成,实验证明人为提高线粒体膜间隙的质子浓度,能使线粒体合成ATP。图7-11 两条主要的呼吸链(引自Lodish等1999) 呼吸链组分及ATP酶在线粒体内膜上呈不对称分布,如细胞色素C位于线粒体内膜的C侧(向细胞质的一侧),而ATP酶位于内膜的M侧(向线粒体基质的一侧)。对于呼吸链组分在内膜上的分布主要依靠用亚线粒体颗粒和冰冻能刻电镜技术来研究。将线粒体用超声波破碎,线粒体内膜碎片可形成颗粒朝外的小膜泡,称亚线粒体小泡或亚线粒体颗粒,这种小泡具有正常的电子传递和磷酸化的功能。用细胞色素c的抗体能够抑制完整线粒体的氧化磷酸化,但不能抑制亚线粒体颗粒的氧化磷酸化,说明细胞色素c位于线粒体内膜的C侧。三、氧化磷酸化的作用机理(一)质子动力势Mitchell P.1961提出“化学渗透假说(Chemiosmotic Hypothesis)”,70年代关于化学渗透假说取得大量实验结果的支持,成为一种较为流行的假说,Mitchell本人也因此获得1978年诺贝尔化学奖。图7-12 化学渗透学说根据“化学渗透假说”,当电子沿呼吸链传递时,所释放的能量将质子从内膜基质侧(M侧)泵至膜间隙(胞质侧或C侧),由于线粒体内膜对离子是高度不通透的,从而使膜间隙的质子浓度高于基质,在内膜的两侧形成pH梯度(pH)及电位梯度(),两者共同构成电化学梯度(图7-12),即质子动力势(P)。 P=-(2.3RT/F)pH 其中T为绝对温度,R为气体常数,F为法拉第常数。大量实验表明,当温度为25时P=-59pH,P的值为220mV左右。质子沿电化学梯度穿过内膜上的ATP酶复合物流回基质,使ATP酶的构象发生改变,将ADP和Pi合成ATP。(二)ATP合酶的结构和作用机理ATP合酶(ATP synthetase, 图7-13),分子量500KD,状如蘑菇。分为球形的F1(头部)和嵌入膜中的F0(基部),它可以利用质子动力势合成ATP,也可以水解ATP,转运质子,属于F型质子泵。每个肝细胞线粒体通常含15000个ATP合酶、每个酶每秒钟可产生100个ATP。F1由5种多肽组成33复合体,具有三个ATP合成的催化位点(每个亚基具有一个)。和单位交替排列,状如桔瓣。贯穿复合体(相当于发电机的转子),并与F0接触,帮助与F0结合。与F0的两个b亚基形成固定复合体的结构(相当于发电机的定子)。图7-13  ATP合酶的结构(引自Lodish等1999) F0由三种多肽组成ab2c12复合体,嵌入内膜,12个c亚基组成一个环形结构,具有质子通道,可使质子由膜间隙流回基质。1979年代Boyer P提出构象耦联假说,一些有力的实验证据使这一学说得到广泛的认可。其要点如下:1ATP酶利用质子动力势,产生构象的改变,改变与底物的亲和力,催化ADP与Pi形成ATP(图7-14)。2F1具有三个催化位点,但在特定的时间,三个催化位点的构象不同、因而与核苷酸的亲和力不同。在L构象(loose),ADP、 Pi与酶疏松结合在一起;在T构象(tight)底物(ADP、 Pi)与酶紧密结合在一起,在这种情况下可将两者加合在一起;在O构象(open)ATP与酶的亲和力很低,被释放出去。3质子通过F0时,引起c亚基构成的环旋转,从而带动亚基旋转,由于亚基的端部是高度不对称的,它的旋转引起亚基3个催化位点构象的周期性变化(L、T、O),不断将ADP和Pi加合在一起,形成ATP。图7-14 ATP合酶三种构象的交替改变(引自Lodish等1999)支持构象耦联假说的实验有:1日本的吉田(Massasuke Yoshida)等人将33固定在玻片上,在亚基的顶端连接荧光标记的肌动蛋白纤维,在含有ATP的溶液中温育时,在显微镜下可观察到亚基带动肌动蛋白纤维旋转(图7-15)。图7-15 亚基旋转的观察(引自Lodish等1999)2在另外一个实验中,将荧光标记的肌动蛋白连接到ATP合酶的F0亚基上,在ATP存在时同样可以观察到肌动蛋白的旋转。(三)氧化磷酸化抑制剂1电子传递抑制剂抑制呼吸链的电子传递。包括以下类型:      抑制NADHCoQ的电子传递。如:阿米妥(amytal)、鱼藤酮(rotenone)、杀粉蝶素A(piericidin)。      抑制Cyt bCyt c1的电子传递。如:抗霉素A(antinomycin A)。       抑制细胞色素氧化酶O2。如:CO、CN、NaN3、H2S。电子传递抑制剂可用来研究呼吸链各组分的排列顺序,当呼吸链某一特定部位被抑制后,底物一侧均为还原状态,氧一侧均为氧化态,可用分光光度计检测,因为电子传递链组分氧化态和还原态具有不同的吸收峰。2磷酸化抑制剂与F0结合结合,阻断H+通道,从而抑制ATP合成。如:寡霉素(oligomycin)、二环己基碳化二亚胺(dicyclohexyl carbodiimide,DCC):3解偶联剂(uncoupler)使氧化和磷酸化脱偶联,氧化仍可以进行,而磷酸化不能进行,解偶联剂为离子载体或通道,能增大线粒体内膜对H+的通透性,消除H+梯度,因而无ATP生成,使氧化释放出来的能量全部以热的形式散发。动物棕色脂肪组织和肌肉线粒体中有独特的解偶联蛋白(uncoupling proteins, UCPs),与维持体温有关。常用解偶联剂主要有:质子载体: 2,4-二硝基酚(DNP,图7-16),羰基-氰-对-三氟甲氧基苯肼(FCCP)。质子通道:增温素(thermogenin)。其它离子载体:如缬氨霉素。某些药物:如过量的阿斯匹林也使氧化磷酸化部分解偶联,从而使体温升高。图7-16 DNP分子结构四、线粒体的半自主性1963年M. 和 S. Nass发现线粒体DNA(mtDNA)后,人们又在线粒体中发现了RNA、DNA聚合酶、RNA聚合酶、tRNA、核糖体、氨基酸活化酶等进行DNA复制、转录和蛋白质翻译的全套装备,说明线粒体具有独立的遗传体系。虽然线粒体也能合成蛋白质,但是合成能力有限。线粒体1000多种蛋白质中,自身合成的仅十余种。线粒体的核糖体蛋白、氨酰tRNA 合成酶、许多结构蛋白, 都是核基因编码, 在细胞质中合成后,定向转运到线粒体的,因此称线粒体为半自主细胞器。利用标记氨基酸培养细胞,用氯霉素和放线菌酮分别抑制线粒体和细胞质蛋白质合成的方法,发现人的线粒体DNA编码的多肽为细胞色素c氧化酶的3个亚基,F0的2个亚基,NADH脱氢酶的7个亚基和细胞色素b等13条多肽。此外线粒体DNA还能合成12S和16SrRNA及22种tRNA。mtDNA分子为环状双链DNA分子,外环为重链(H),内环为轻链(L )。基因排列非常紧凑,除与mtDNA复制及转录有关的一小段区域外,无内含子序列。每个线粒体含数个m tDNA,动物m tDNA 约16-20kb,大多数基因由H链转录, 包括2个rRNA , 14个tRNA 和12个编码多肽的mRNA , L链编码另外8个tRNA和一条多肽链。mtDNA上的基因相互连接或仅间隔几个核苷酸序列, 一些多肽基因相互重叠, 几乎所有阅读框都缺少非翻译区域。很多基因没有完整的终止密码, 而仅以T或TA 结尾,mRNA的终止信号是在转录后加工时加上去的。线粒体在形态,染色反应、化学组成、物理性质、活动状态、遗传体系等方面,都很像细菌,所以人们推测线粒体起源于内共生。按照这种观点,需氧细菌被原始真核细胞吞噬以后,有可能在长期互利共生中演化形成了现在的线粒体。在进化过程中好氧细菌逐步丧失了独立性,并将大量遗传信息转移到了宿主细胞中,形成了线粒体的半自主性。线粒体遗传体系确实具有许多和细菌相似的特征,如:DNA为环形分子,无内含子;核糖体为70S型;RNA聚合酶被溴化乙锭抑制不被放线菌素D所抑制;tRNA、氨酰基-tRNA合成酶不同于细胞质中的;蛋白质合成的起始氨酰基tRNA是N-甲酰甲硫氨酰tRNA,对细菌蛋白质合成抑制剂氯霉素敏感对细胞质蛋白合成抑制剂放线菌酮不敏感。此外哺乳动物mtDNA的遗传密码与通用遗传密码有以下区别:UGA不是终止信号,而是色氨酸的密码;多肽内部的甲硫氨酸由AUG和AUA两个密码子编码,起始甲硫氨酸由AUG,AUA,AUU和AUC四个密码子编码;AGA,AGG不是精氨酸的密码子,而是终止密码子,线粒体密码系统中有4个终止密码子(UAA,UAG,AGA,AGG)。mtDNA表现为母系遗传。其突变率高于核DNA,并且缺乏修复能力。有些遗传病,如Leber遗传性视神经病,肌阵挛性癫痫等均与线粒体基因突变有关。五、线粒体的增殖线粒体的增殖是通过已有的线粒体的分裂,有以下几种形式:1、间壁分离(图7-17),分裂时先由内膜向中心皱褶,将线粒体分类两个,常见于鼠肝和植物产生组织中。图7-17 线粒体的间壁分裂2、收缩后分离(图7-18),分裂时通过线粒体中部缢缩并向两端不断拉长然后分裂为两个,见于蕨类和酵母线粒体中。图7-18 线粒体的收缩分裂3、出芽,见于酵母和藓类植物,线粒体出现小芽,脱落后长大,发育为线粒体第二节 叶绿体几乎可以说一切生命活动所需的能量来源于太阳能(光能)。绿色植物是主要的能量转换者是因为它们均含有叶绿体(Chloroplast)这一完成能量转换的细胞器,它能利用光能同化二氧化碳和水,合成糖,同时产生氧(图7-19)。所以绿色植物的光合作用是地球上有机体生存、繁殖和发展的根本源泉。图7-19 光合作用反应式一、形态与结构在高等植物中叶绿体象双凸或平凸透镜,长径510um,短径24um,厚23um。高等植物的叶肉细胞一般含50200个叶绿体,可占细胞质的40%,叶绿体的数目因物种细胞类型,生态环境,生理状态而有所不同。在藻类中叶绿体形状多样,有网状、带状、裂片状和星形等等,而且体积巨大,可达100um。叶绿体由叶绿体外被(chloroplast envelope)、类囊体(thylakoid)和基质(stroma)3部分组成,叶绿体含有3种不同的膜:外膜、内膜、类囊体膜和3种彼此分开的腔:膜间隙、基质和类囊体腔(图7-20)。图7-20 叶绿体的结构(一)外被叶绿体外被由双层膜组成,膜间为1020nm的膜间隙。外膜的渗透性大,如核苷、无机磷、蔗糖等许多细胞质中的营养分子可自由进入膜间隙。内膜对通过物质的选择性很强,CO2、O2、Pi、H2O、磷酸甘油酸、丙糖磷酸,双羧酸和双羧酸氨基酸可以透过内膜,ADP、ATP已糖磷酸,葡萄糖及果糖等透过内膜较慢。蔗糖、C5糖双磷酸酯,C糖磷酸酯,NADP+及焦磷酸不能透过内膜,需要特殊的转运体(translator)才能通过内膜。(二)类囊体是单层膜围成的扁平小囊,沿叶绿体的长轴平行排列。膜上含有光合色素和电子传递链组分,又称光合膜。许多类囊体象圆盘一样叠在一起,称为基粒,组成基粒的类囊体,叫做基粒类囊体,构成内膜系统的基粒片层(grana lamella)。基粒直径约0.250.8m,由10100个类囊体组成。每个叶绿体中约有4060个基粒。贯穿在两个或两个以上基粒之间的没有发生垛叠的类囊体称为基质类囊体,它们形成了内膜系统的基质片层(stroma lamella)。由于相邻基粒经网管状或扁平状基质类囊体相联结,全部类囊体实质上是一个相互贯通的封闭系统。类囊体做为单独一个封闭膜囊的原始概念已失去原来的意义,它所表示的仅仅是叶绿体切面的平面形态。类囊体膜的主要成分是蛋白质和脂类(60:40),脂类中的脂肪酸主要是不饱含脂肪酸(约87%),具有较高的流动性。光能向化学能的转化是在类囊体上进行的,因此类囊体膜亦称光合膜,类囊体膜的内在蛋白主要有细胞色素b6/f复合体、质体醌(PQ)、质体蓝素(PC)、铁氧化还原蛋白、黄素蛋白、光系统、光系统复合物等。(三)基质是内膜与类囊体之间的空间,主要成分包括:碳同化相关的酶类:如RuBP羧化酶占基质可溶性蛋白总量的60%。叶绿体DNA、蛋白质合成体系:如,ctDNA、各类RNA、核糖体等。一些颗粒成分:如淀粉粒、质体小球和植物铁蛋白等。二、光合作用机理光合作用的是能量及物质的转化过程。首先光能转化成电能,经电子传递产生ATP和NADPH形式的不稳定化学能,最终转化成稳定的化学能储存在糖类化合物中。分为光反应(light reaction)和暗反应(dark reaction),前者需要光,涉及水的光解和光合磷酸化,后者不需要光,涉及CO2的固定。分为C3和C4两类。(一)光合色素和电子传递链组分1光合色素类囊体中含两类色素:叶绿素(图7-21)和橙黄色的类胡萝卜素,通常叶绿素和类胡萝卜素的比例约为3:1,chla与chlb也约为3:l,全部叶绿素和几乎所有的类胡萝卜素都包埋在类囊体膜中,与蛋白质以非共价键结合,一条肽链上可以结合若干色素分子,各色素分子间的距离和取向固定,有利于能量传递。图7-21 叶绿体分子结构2集光复合体(light harvesting complex)由大约200个叶绿素分子和一些肽链构成(图7-22)。大部分色素分子起捕获光能的作用,并将光能以诱导共振方式传递到反应中心色素。因此这些色素被称为天线色素。叶绿体中全部叶绿素b和大部分叶绿素a都是天线色素。另外类胡萝卜素和叶黄素分子也起捕获光能的作用,叫做辅助色素。图7-22 集光复合体3光系统(PS)吸收高峰为波长680nm处,又称P680。至少包括12条多肽链。位于基粒于基质非接触区域的类囊体膜上。包括一个集光复合体(light-hawesting comnplex ,LHC )、一个反应中心和一个含锰原子的放氧的复合体(oxygen evolving complex)。D1和D2为两条核心肽链,结合中心色素P680、去镁叶绿素(pheophytin)及质体醌(plastoquinone)。4细胞色素b6/f复合体(cyt b6/f complex)可能以二聚体形成存在,每个单体含有四个不同的亚基。细胞色素b6(b563)、细胞色素f、铁硫蛋白、以及亚基(被认为是质体醌的结合蛋白)。5光系统(PSI)能被波长700nm的光激发,又称P700。包含多条肽链,位于基粒与基质接触区和基质类囊体膜中。由集光复合体和作用中心构成。结合100个左右叶绿素分子、除了几个特殊的叶绿素为中心色素外外,其它叶绿素都是天线色素。三种电子载体分别为A0(一个chla分子)、A1(为维生素K1)及3个不同的4Fe-4S。(二)光反应与电子传递P680接受能量后,由基态变为激发态(P680*),然后将电子传递给去镁叶绿素(原初电子受体),P680*带正电荷,从原初电子供体Z(反应中心D1蛋白上的一个酪氨酸侧链)得到电子而还原;Z+再从放氧复合体上获取电子;氧化态的放氧复合体从水中获取电子,使水光解。2H 2OO2 + 4H+ + 4e-在另一个方向上去镁叶绿素将电子传给D2上结合的QA,QA又迅速将电子传给D1上的QB,还原型的质体醌从光系统复合体上游离下来,另一个氧化态的质体醌占据其位置形成新的QB。质体醌将电子传给细胞色素b6/f复合体,同时将质子由基质转移到类囊体腔。电子接着传递给位于类囊体腔一侧的含铜蛋白质体蓝素(plastocyanin, PC)中的Cu2+,再将电子传递到光系统。P700被光能激发后释放出来的高能电子沿着A0 A1 4Fe-4S的方向依次传递,由类囊体腔一侧传向类囊体基质一侧的铁氧还蛋白(ferredoxin,FD)。最后在铁氧还蛋白-NADP还原酶的作用下,将电子传给NADP+,形成NADPH。失去电子的P700从PC处获取电子而还原(图7-23)。图7-23 非循环式光合磷酸化以上电子呈Z形传递的过程称为非循环式光合磷酸化(图7-23),当植物在缺乏NADP+时,电子在光系统内流动,只合成ATP,不产生NADPH,称为循环式光合磷酸化(图7-24)。图7-24 非循环式光合磷酸化图7-25 两个光系统的协同作用(三)光合磷酸化一对电子从P680经P700传至NADP+,在类囊体腔中增加4个H+,2个来源于H2O光解,2个由PQ从基质转移而来,在基质外一个H+又被用于还原NADP+,所以类囊体腔内有较高的H+(pH5,基质pH8),形成质子动力势,H+经ATP合酶,渗入基质、推动ADP和Pi结合形成ATP(图7-26)。ATP合酶,即CF1-F0偶联因子,结构类似于线粒体ATP合酶。CF1同样由5种亚基组成33的结构。CF0嵌在膜中,由4种亚基构成,是质子通过类囊体膜的通道。图7-26 氧化磷酸化和光合磷酸和的比较(四)暗反应C3途径(C3 pathway):亦称卡尔文 (Calvin)循环。CO2受体为RuBP,最初产物为3-磷酸甘油酸(PGA)。C4途径(C4 pathway) :亦称哈奇-斯莱克(Hatch-Slack)途径,CO2受体为PEP,最初产物为草酰乙酸(OAA)。景天科酸代谢途径(Crassulacean acid metabolism pathway,CAM途径):夜间固定CO2产生有机酸,白天有机酸脱羧释放CO2,进行CO2固定。三、叶绿体的半自主性线粒体与叶绿体都是细胞内进行能量转换的场所,两者在结构上具有一定的相似性。均由两层膜包被而成,且内外膜的性质、结构有显著的差异。均为半自主性细胞器,具有自身的DNA和蛋白质合成体系。因此绿色植物的细胞内存在3个遗传系统。叶绿体DNA由Ris和Plaut 1962最早发现于衣藻叶绿体。ctDNA呈环状,长4060m,基因组的大小因植物而异,一般约200Kb-2500Kb。数目的多少植物的发育阶段有关,如菠菜幼苗叶肉细胞中,每个细胞含有20个叶绿体,每个叶绿体含DNA分子200个,但到接近成熟的叶肉细胞中有叶绿体150个,每个叶绿体含30个DNA分子。和线粒体一样,叶绿体只能合成自身需要的部分蛋白质,其余的是在细胞质激离的核糖体上合成的,必需运送到叶绿体,才能发挥叶绿体应有的功能。已知由ctDNA编码的RNA和多肽有:叶绿体核糖体中4种rRNA(20S、16S、4.5S及5S),20种(烟草)或31种(地钱)tRNA,约90多种多肽。由于叶绿体在形态、结构、化学组成、遗传体系等方面与蓝细菌相似,人们推测叶绿体可能也起源于内共生的方式,是寄生在细胞内的蓝藻演化而来的。四、叶绿体的增殖在个体发育中叶绿体由原质体发育而来,原质体存在于根和芽的分生组织中,由双层被膜包围,含有DNA,一些小泡和淀粉颗粒的结构,但不含片层结构,小泡是由质体双层膜的内膜内折形成的。在有光条件原质体的小泡数目增加并相互融合形成片层,多个片层平行排列成行,在某些区域增殖,形成基粒,变成绿色原质体发育成叶绿体。在黑暗性长时,原质体小泡融合速度减慢,并转变为排列成网格的小管的三维晶格结构,称为原片层,这种质体称为黄色体。黄色体在有光的情况下原片层弥散形成类囊体,进一步发育出基粒,变为叶绿体。叶绿体能靠分裂而增殖,这各分裂是靠中部缢缩而实现的,在发育7天的  幼叶的基部2-2.5cm处很容易看到幼龄叶绿体呈哑铃形状,从菠菜幼叶含叶绿体少,ctDNA多,老叶含叶绿体多,每个叶绿体含ctDNA少的现象也可以看出叶绿体是以分裂的方式增殖的。成熟叶绿体正常情况下一般不再分裂或很少分裂第三节 线粒体与叶绿体的蛋白质定向转运一、线粒体蛋白质的转运线粒体的蛋白合成能力有限,大量线粒体蛋白在细胞质中合成,定向转运到线粒体。这些蛋白质在在运输以前,以未折叠的前体形式存在,与之结合的分子伴娘(属hsp70家族)保持前体蛋白质处于非折叠状态。通常前体蛋白N端有一段信号序列称为导肽、前导肽或转运肽(leader sequence、presequence或transit-peptide),完成转运后被信号肽酶(signal peptidase)切除,就成为成熟蛋白,这种现象就叫做后转译(posttranslation,图7-27)。图7-27 线粒体蛋白质的定向转运 引自Molecular Biology of the Cell. 4th ed. 2002线粒体前体蛋白信号序列的特点是:多位于肽链的N端,由大约20个氨基酸构成;没有带负电荷的氨基酸,形成一个两性螺旋,带正电荷的氨基酸残基和不带电荷的疏水氨基酸残基分别位于螺旋的两侧,现在认为这个螺旋与转位因子的识别有关;对所牵引的蛋白质没有特异性要求,非线粒体蛋白连接上此类信号序列,也会被转运到线粒体。此外有些信号序列位于蛋白质内部,完成转运后不被切除,还有些信号序列位于前体蛋白C端,如线粒体的DNA解旋酶 Hmil。表7-1 线粒体蛋白分选信号*信号序列定位转运装置信号序列位置位于N端,富含带正电荷的和疏水的氨基酸,形成两性螺旋,完成转运后被切除。基质TOMTIM23不被切除,含疏水性的停止转移序列,被安插到外膜。外膜TOM被切除,含疏水性的停止转移序列,被安插到内膜。内膜TOMTIM23含两个信号序列,首先转运到基质,第一个信号序列被切除,第二个信号序列引导蛋白进入内膜或膜间隙。内膜膜间隙TOMTIM23结构类似于N端信号序列,但位于蛋白质内部。内膜TOMTIM23为线粒体代谢物的转运蛋白,如腺苷转位酶,具有多个内部信号序列和停止转移序列,形成多次跨膜蛋白。内膜TOMTIM22*根据N. Pfanner and A. Geissler 2001改编图7-28 线粒体的蛋白转运装置TOM和TIM复合体 引自Joachim Rassow and Nikolaus Pfanner 2000蛋白质的转运涉及多种蛋白复合体,即转位因子(translocator,图7-28),由两部分构成的:受体和蛋白质通过的孔道。主要包括:TOM复合体,负责通过外膜,进入膜间隙,在酵母中TOM70负责转运内部具有信号序列的蛋白,TOM20负责转运N端具有信号序列的蛋白,这两种蛋白的功能都相当于内质网上的SPR受体,在人类线粒体中hTom34的功能与TOM70相当。TOM复合体的通道被称为GIP(general import pore),就相当于内质网上的SEC61复合体,主要由Tom40构成, 还包括Tom22, Tom7, Tom6和Tom5;TIM复合体,其中TIM23负责将蛋白质转运到基质,也可将某些蛋白质安插在内膜;TIM22负责将线粒体的代谢物运输蛋白,如ADPATP和磷酸的转运蛋白插入内膜;OXA复合体:负责将线粒体自身合成的蛋白质插到内膜上,同样也可使经由TOMTIM复合体进入基质的蛋白质插入内膜。线粒体具有四个功能区隔,即外膜、内膜、膜间隙、基质。进入不同部位的蛋白具有不同的转运途径。进入外膜的蛋白具有不被切除的N端信号序列,其后还有疏水性序列作为停止转移序列,然后蛋白质被TOM复合体安装到外膜上,如线粒体的各类孔蛋白。进入基质蛋白质可以先通过TOM复合体进入膜间隙,然后通过TIM复合体进入基质。也可以通过线粒体内、外膜间的接触点(鼠肝直径1um线粒体上约115个接触点),一步进入基质,在接触点上TOM与TIM协同作用完成蛋白质向基质的输入(图7-29)。图7-29 线粒体内外膜的接触点进入线粒体内膜和膜间隙的蛋白具有以下几种情况(图7-30):蛋白N端具有两个信序列,首先被运送到基质,然后N端信号肽被切除,暴露出导向内膜的信号序列,在OXA的帮助下插入内膜。如果第二段信号序列被内膜外表面的异二聚体内膜蛋白酶(heterodimeric inner membrane peptidase,Imp1/imp2)切除,则成为膜间隙蛋白。N端信号序列的后面有一段疏水序列,扮演停止转移序列的角色,能与TIM23复合体结合,当进入基质的信号序列被切除后,脱离转位因子复合体而进入内膜,如果插入膜中的部分又被酶切除,侧成为定位于膜间隙的蛋白。线粒体内膜上负责代谢底物产物转运的蛋白,如腺苷转位酶是多次跨膜蛋白,其N端没有可被切除的信号序列,但包含36个内部信号序列,可被TIM22复合体插到内膜上。图7-30 蛋白质进入内膜和膜间隙 引自Molecular Biology of the Cell. 4th ed. 2002,(A. 进入内膜和膜间隙的前体蛋白具有两个信号序列,经TOMTIM23进入基质后,第二个信号序列使蛋白通过OXA复合体被安插到内膜上;B. 进入内膜和膜间隙的前体蛋白信号序列后具有停止转移序列,被TIM23安插在膜上,C. 通过途径A、B插入内膜的蛋白,被位于内膜的蛋白酶加工,成为膜间隙的可溶性蛋白,D. 线粒体代谢物的转运器为多次跨膜蛋白,被TIM22安插到内膜中)蛋白质的输入是一个耗能的过程,能量的来源为水解ATP和利用质子动力势能量消耗在线粒体外和进入线粒体基质两步上,在线粒体外解除与前体蛋白质结合的分子伴娘,需要通过水解ATP获得能量;在通过TIM复合体进入基质时利用质子动力势作为动力。虽然目前含不清楚质子动力势是如何被利用的,但解偶连接如DNP能抑制蛋白质的转运。前体蛋白进入线粒体基质后,线粒体hsp70一个接一个的结合在蛋白质线性分子上,像齿轮一样将蛋白质“铰进(hand over hand)”基质,这一过程也需要消耗ATP。然后线粒体hsp70将蛋白质交给hsp60,完成折叠。二、叶绿体的蛋白质转运叶绿体大约含2000-2500 种蛋白,叶绿体基因组编码的不足100 种,因此大量的蛋白质也是由核基因编码,在细胞质中合成,然后定向转运到叶绿体。叶绿体蛋白的转运机理与线粒体的相似。如:通常前体蛋白N端

    注意事项

    本文(第七章线粒体与叶绿体.doc)为本站会员(本田雅阁)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    经营许可证编号:宁ICP备18001539号-1

    三一文库
    收起
    展开