欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 研究报告>
  • 工作总结>
  • 合同范本>
  • 心得体会>
  • 工作报告>
  • 党团相关>
  • 幼儿/小学教育>
  • 高等教育>
  • 经济/贸易/财会>
  • 建筑/环境>
  • 金融/证券>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > PPT文档下载
     

    动态下环境监测DrBerndKalkert.ppt

    • 资源ID:2551385       资源大小:2.90MB        全文页数:94页
    • 资源格式: PPT        下载积分:8
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录   微博登录  
    二维码
    微信扫一扫登录
    下载资源需要8
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    动态下环境监测DrBerndKalkert.ppt

    动态下环境监测,Dr. Bernd Kalkert Sep. 2004,2,1. 引言,本文的目的是阐述有关无菌产品生产的微生物和微粒控制的概念和原则。 这些概念对于无菌产品生产非常重要,但也可用于非无菌产品的生产。 环境监测的重点在于其有关的设施控制和符合标准。 环境监测的目的在于可帮助建立一个有针对性的、易于管理和有预防功能的程序。,3,为确保稳定的生产环境,全面的环境控制程序应包括以下方面: a. 合理的厂房设计和维护 b. 文件系统 c. 已验证/确认的卫生清洁/消毒程序 d. 可靠的过程控制 e. 良好的设备管理和保养 f. 进入洁净区的有效控制 g. 有效的培训,证书/资格以及评估程序 h. 物料及设备的质量保证 环境监测是一种评估对生产环境控制的有效性的工具。 进入制药厂的洁净室和其它受控环境的程序是无菌保证程序的辅助。,4,2. 环境级别,应基于科学合理的原则设计和执行环境监测程序,并与生产所在地的政府法规要求相一致。 如果是为了供应国际市场,应以最严格的要求作为环境监测的基本原则。,5,6,7,8,3. 监督保证,从事环境监测程序的人员应具有科学方面的知识,并经过相应的培训和授权。 应校准所使用的设备,验证系统,正确制备培养基,所有操作程序应书面成文并遵照执行。,9,3.1 清洁及卫生/消毒,执行清洁和卫生程序是厂房控制的关键部分。环境监测的数据用于确定这些程序的有效性。 消毒剂的选择包括: a. 必需的接触时间的评估 b. 消除的微生物的种类 c. 有效性的确定 d. 待处理表面的类型 e. 毒性 f . 残留 g. 使用方法 对已建立的清洁和卫生程序进行的验证应证明微生物的减少。 其目的是为了证明经培训的清洁人员执行的日常卫生程序能够保证所使用区域的微生物控制是符合使用要求的。 采用环境监测过程中获得的分离菌,对所选择的清洁剂和消毒剂进行挑战试验是可靠的方法。,10,3.2 取样点的选择,取样的主要目的是为了提供有意义的数据,这些数据可以帮助确定目前的或潜在的污染,有关a) 特殊操作; b) 设备; c) 物料; d) 加工过程的污染问题。 应从最有可能导致产品污染的位置取样;然而,应谨慎确定取样点的位置是接近,但不是接触产品。,11,日常监测选择取样点应考虑的因素: a. 在这些取样点,是否微生物污染最可能对产品质量有不利影响? b. 实际生产过程中,哪些位置是最利于微生物增殖的? c. 一些日常监测点是否应轮换? d. 哪些位置能代表最难以接近或清洁/消毒的区域? f. 区域中的哪些操作导致污染的扩散? g. 在指定位置的取样是否严重干扰环境,导致收集了错误的数据或污染产品?取样是否仅在一班的最后进行?,12,13,3.3 取样频率,单一取样方案不适合于所有环境。 选择监测频率的关键是能够确定潜在的系统缺陷。 每个点的检验频率可以少于系统或区域的检验频率。 在多种情况下,批生产时进行监测可以满足常规区域监测的要求。,14,3.4 警报和行动水平,一般的,行动水平必须符合官方或行业指南,警报水平可依据环境监测数据的历史分析制定。 一旦建立了警报和/或行动水平,应作为日常趋势分析的一部分定期进行回顾。 警报和行动水平不是产品规格的扩充,但可作为确定变化的标志,因此可以在产品质量受到不良影响前采取纠正措施。并非所有情况都需要使用警报和行动水平。 一般的,严格控制环境中的污染不是在正态分布范围内。,15,3.5 数据管理,数据收集:日常数据以统一的记录格式汇集到指定的数据库中。 数据分析:,16,数据整理: 应对监测数据进行总结和评估,以确定生产环境是否处于受控状态。 统计学方法是进行评估的一种方法。 对于数据的显著波动或菌群的改变所产生影响的分析,应基于有资质的人所作出的判断。 评估过程应考虑的情况: a) 出现高于一般值的数值时,可能预示工艺规格不再合适。可能需回顾工艺参数。 b) 几个连续点或偏离可看作是一组,如果高于警报水平,表示需进行调查。 c) 数值的显著波动或跳跃也是很重要的,重复出现可能显示出周期性的变化。 d) 一个或一个以上的数据显著高于或低于大多数数据时,可以计算在内或不计算在内。,17,3.6 分离菌的检定,检定环境和人员监测中获得的微生物是监测程序的重要部分。 最初,检定的许多分离菌可建立一个区域中所发现的微生物的数据库。 一旦数据库建立,日常的检定应继续进行以确定分离菌是正常菌群的一部分或是其它不同的微生物。 分离菌的检定也可用于环境的调查,例如阳性无菌检查结果,阳性培养基灌封结果,警报和行动水平偏移, 或引入一种可给出耐清洁剂信号的普通生物体。 菌群的变化或系统中出现一种以前未检测到的菌时,应进行调查。检定可为分离菌的来源提供有用的线索。 例如,金黄色葡萄球菌通常在皮肤上发现,铜绿假单胞菌常常与水有关。,18,3.7 调查 /纠正措施,当偏移发生时,可能会与基准线有偏差。应进行调查以确定发生何种偏差以及采取何种措施来防止此类偏差再次发生。 记录应显示偏差已确认并且采取了适当的措施。 当超过警报或行动水平时,可采取下列措施: a. 通知有关的管理者。 开始调查,以确定偏离指定操作参数的原因和结果。 b. 执行纠正措施,着手解决问题。 c. 回顾后续行动以评估纠正措施的有效性。,19,20,3.8 文件,文件记录中应考虑的项目: a) 检验的日期和时间 b) 检验方法 / 参考程序 c) 检验的行动水平 d) 鉴别仪器 e) 位置 f ) 区域分类 g) 平面图显示取样点 h) 取样点(关键点或非关键点) I ) 检验结果 j ) 结果的评估 k) 显示数据结果 l ) 警报和或行动水平 m) 温度和培养时间 n) 核对检验结果 o) 报告日期,批准日期,以及所使用培养基的失效期。 p) 污染的检定 q) 回顾者姓名 r ) 报告日期 s) 历史数据的回顾 t ) 变更控制系统 u) 所使用仪器的校准日期 v) 确定行动或警报水平的分析方法 w) 记录调查/纠正措施的文件系统: 1. 缺陷的描述 2. 可能的原因 3. 纠正措施相关责任人的确定 4. 行动步骤的描述以及执行进度表 5. 行动有效性的评估,21,4. 监测系统,4.1.1 最终灭菌 最终灭菌环境控制程序与影响灭菌前产品的生物负载和内毒素含量的微生物菌群有关。 包括蒸馏水、灭菌冷却水、精制水、自来水、空气、表面、容器和盖子的微生物限度。 此程序的最关键部分是已灌装的待灭菌产品的生物负载。这部分保证灭菌过程中出现的芽孢(耐热)生物负载限度不超过经验证的灭菌能力,并且达到期望的灭菌水平。 4.1.2 无菌灌装 监测的取样点数量和频率通常大于已建立的最终灭菌过程监测点的数量和频率。 灌装间内的空气、水、人员、压缩空气、地面、墙壁、设备、表面。 有效的环境控制是无菌制剂生产过程的一部分,是保证无菌的关键因素。 无菌灌装产品的生产文件中应包括日常环境监测数据的回顾。,22,洁净蒸汽 检测频率:每月一次 检测项目 限度 内毒素 警报水平:=0.12 EU/ml;行动水平: 0.25 EU/ml 微粒数 光阻法(HIAC): = 10 微米 max. 500 个/100ml = 25 微米 max. 20 个/100ml 微滤法(MF): = 25 微米 max. 100 个/100ml = 50 微米 max. 10 个/100ml 金属微粒 = 100 微米 max. 1/100ml 化学性质 必须符合药典中 注射用水的要求。,23,氮气 检测频率:每月一次 检测项目 限度 微生物数量 警报水平:10 cfu/m3;行动水平:100 cfu/m3 压缩空气 检验频率:每月一次 检测项目 限度 微生物数量 警报水平:10 cfu/m3;行动水平:100 cfu/m3,24,高压灭菌锅中的水 检验频率: 微生物计数:每周一次;内毒素:每两周一次;电导率:连续检测 检测项目 限度 微生物数量 警报水平:5 cfu/100ml;行动水平:10 cfu/100ml 不得检出大肠杆菌、大肠菌群和铜绿假单胞菌 内毒素 警报水平:0.12 EU/ml;行动水平:0.25 EU/ml 电导率 max. 15 microS/cm,25,4.2 水的监测,水中微生物数量的控制对于药品生产厂非常重要,因为水可用于制剂产品以及各种清洗和冲洗程序。 水的来源或供给应满足饮用水的标准要求。这些要求保证水中无大肠菌群。 如果使用点的水使用前是循环的,收集同一循环中的样品是适当的。 如果生产过程需要使用水管,那么取通过水管,而不是直接来源于水龙头的样品。 取样后立即进行微生物检验。 如果不能立即进行检验,实验室收到样品后应在2-8°C条件下冷藏样品。取样和检验之间的时间间隔通常不超过24小时。,26,纯化水 检测项目 限度 微生物数量 警报水平:50 cfu/ml;行动水平:100 cfu/ml 不得检出大肠杆菌、大肠菌群和铜绿假单胞菌 内毒素 警报水平:0.12 EU/ml;行动水平:0.25 EU/ml 电导率 警报水平:1.0 microS/cm;行动水平:1.5microS/cm ( 连续 ) TOC 警报水平:250 ppb;行动水平:500 ppb ( 连续 ),27,注射用水 检测频率:每天;微粒:每月 检测项目 限度 微生物数量 警报水平:5 cfu/100ml;行动水平:10 cfu/100ml 不得检出大肠杆菌、大肠菌群和铜绿假单胞菌 内毒素 警报水平:0.12 EU/ml;行动水平:0.25 EU/ml 电导率 警报水平:1.0 microS/cm;行动水平:1.5 microS/cm ( 连续 ) TOC 警报水平:250 ppb ;行动水平:500 ppb 微粒 光阻法(HIAC): = 10 微米 max. 500 个/100ml = 25 微米 max. 20 个/100ml 微滤法(MF): = 25 微米 max. 100 个/100ml = 50 微米 max. 10 个/100ml 金属微粒 = 100 微米 max. 1/100ml,28,4.3 压缩空气的监测,应考虑以下几点: a) 用于密封或保护无菌贮罐中产品的压缩空气应经过疏水的通风过滤器,并按一定的频率进行监测,以保证过滤器能有效过滤细菌。 b) 用于无菌环境的压缩气体/空气应采用无菌级的过滤器过滤,并按一定的频率进行检验,以保证气体/空气对环境无不良影响。 c) 所有不影响操作间中空气的压缩气体可按较少的频率进行监测。,29,4.4 空气监测,环境监测程序应包括有活性和无活性的空气中悬浮微粒的日常监测。 来源于人体的活菌与皮肤的脱落物有关,因此无活性微粒的数量高可能指示活性数量的增加。 人是环境中活性和无活性微粒的主要来源。 除满足法规中要求的动态监测之外,静态监测也可能是必需的。,30,4.4.1 无活性微粒的监测,生产过程中有暴露过程的产品,应证明环境中的潜在污染是受控的。 0.5um或更大的微粒通常作为环境污染的指标。对5.0um微粒的监测也可包括在内。 通常使用的监测方法是目视微粒计数。此方法的原理是使带有悬浮粒子的气体通过一个聚焦光源,使得光线在单个微粒表面发生散射。 微粒的尺寸和数量可同时测量。 除便携式微粒计数器外,已研制出的监测系统可永久安装在生产区域,连续监测生产过程,并有集中数据存储和报警功能。,31,4.4.2 活性微粒的监测,空气中的微生物通常与固体或液体微粒有关。 生物体可能粘附尘粒或其它小载体,如果没有附着,也存在自由流动的微粒悬浮在空气中。 4.4.2.1 监测点 监测位置:在灌装/密封过程中,距离操作点不超过1英尺,并且在气流的上游。 除最初验证/确认时环境、人流和生产过程的取样点之外,应选择其它的监测位置。 4.4.2.2 方法 环境中主动气体取样是为了证明可能存在的活性悬浮微粒是受控的。 个别国家要求使用平皿暴露法和主动空气取样法。 空气中悬浮微粒的监测程序可能要求使用主动和被动空气取样两种方法。,32,4.4.2.3 设备,表面空气取样器( Surface Air Sampler ) SAS 取样器的工作原理:空气通过涡轮被吸入装置中,被吸在一个培养基平板的表面。 优点: 轻便灵活 独立的电源 带孔的盖板可蒸汽灭菌 可测量大量空气 使用标准培养基板 可测量气流,Slit-to-Agar (STA) 空气取样器 在距裂缝口的精确位置处,使用一可旋转的琼脂平板,气体样品直接撞击固体营养培养基的表面。 优点: 可测量大量气体 可利用时间-浓度关系 可使用微量取样探针 可用于压缩气体的取样 缺点: 设备大而不便 有些设备不能蒸汽灭菌,33,离心取样器 工作原理:空气通过涡轮被吸入装置中,微粒由于地心引力而沉积在固体营养采集培养基(带状)的表面。 优点: 轻便灵活 独立的电源 收集顶部可蒸汽灭菌 可测量大量空气 可测量气流 缺点: 培养带来源单一,表面真空取样器 取样器使用不锈钢容器,填充有营养培养基的培养皿置于容器中。利用真空系统将空气样品(和微粒)吸在培养平板的表面。 优点: 整个取样部分可蒸汽灭菌 可用于压缩气体的取样 可遥控放置 可测量气流 可取样大量气体 缺点: 设备有些笨重(带有真空系统),34,液体气雾捕集法 此种方法是使空气通过一个管子,管子的出口在液体收集培养基的液面下。 优点: 可选择培养基,例如磷酸盐缓冲液(PBS)或培养基(培养基中可能需加防沫剂) 有生长力的细胞在液体培养基中更易存活 价格便宜 缺点: 样品处理可能会引起污染,过滤法 此方法使用空气取样器,取样器采用真空系统将空气吸过一个过滤器,使得颗粒聚集在过滤器上。无菌转移此过滤器,并在合适的营养培养基上进行培养。 优点: 可测量大量气体 过滤器培养基和可用的孔径选择广泛 可测量气流 缺点: 收集样品的膜必须放置在营养培养基上,35,平皿放置法 此方法使用有固体营养培养基的细菌培养皿,细菌培养皿直接暴露在环境中。 空气中的微粒沉积在琼脂的表面,培养后可直接计数。 优点: 使用简便 经济 实际上任何培养基都可使用 可沿着灌装线放置 可连续监测,通过更换培养皿延长监测时间 不需要提供能量 缺点: 微生物数量与空气体积无关。 沉积的微粒受微粒大小、温度和通过其表面的气流/空气量的影响。 如果暴露时间太长,平皿会变干。,36,空气中微生物的监测 平皿放置法: 频率和限度 cfu/25cm2,微生物数量级别 需氧菌 霉菌和酵母菌 厌氧菌 警报水平 行动水平,A.无菌灌装: 最少每季度 4h 最少每年 4h 0 0 - 每一灌装前的准备工作最少30' - 每一无菌连接操作最少30' - 整个灌装期间 (max.4h/平皿) - 灌装后 最终灭菌产品: 灌装过程中最少每天4小时,B.无菌灌装 最少每季度 4h 最少每年 4h 1 5 - 整个灌装期间 (max.4h/平皿) -灌装后 最终灭菌产品: 灌装过程中最少每天4小时 C.最少每周 4h 最少每季度 4h 最少每年 4h 9 50,D 最少每月 4h 最少每季度4h 最少每年4h 10 100 E.最少每月 1h 最少每季度1h 最少每年1h 13 100,37,4.4.3 表面监测,所使用培养基的类型可能影响取样点代表菌群的检测。 培养基中可加入中和剂,使得经过化学消毒剂处理的表面钝化。 1. 接触平板法 通常使用接触平板是因为其使用方便,并可提供定量结果。 一般平板的直径是50mm,并且是经填充的,因此培养基形成半球型。 培养基的表面可被压成一个平坦的表面,因而采样面积大约25cm²。 然后培养皿按照要求的培养时间放置在培养箱中。 缺点: 不适用于不规则表面 如果培养基是湿的,可能发生微生物聚集 培养基的残留物必须从取样点移走,38,2. 擦拭法 此方法适用于无法使用接触平板的设备和不规则表面。 擦拭物的类型包括棉花、达克龙(聚酯纤维)和藻酸钙。 藻酸钙的纤维可以溶化,因此可将所有收集的微生物释放到溶液中。 缺点: 方法和取样可能影响结果 需经处理才能培养样品 3. 表面冲洗法 此方法最适用于需确定内表面生物负载的大表面积区域。 无菌水是常用的用于冲洗内表面的液体;然后可通过膜过滤法收集和检验。 缺点: 多数设备不适用 需大量操作 方法和取样过程可能影响结果,39,表面微生物监测 频率和限度 cfu/25cm2,微生物数量级别 需氧菌 霉菌和酵母菌 厌氧菌 警报水平 行动水平 A. 无菌灌装 最少每季度一次 最少每年一次 0 0 - 每一灌装前的准备工作 - 每一无菌连接操作 - 最少每班一次 - 灌装后 最终灭菌产品: 最少每周一次 闲置的A级洁净区域: 最少每周一次 B. 无菌灌装 最少每季度一次 最少每年一次 1 5 -最少每班一次 -灌装后 最终灭菌产品: 最少每周一次 闲置的B级无菌室: 最少每周一次 C.最少每周一次 最少每季度一次 最少每年一次 5 25 D.最少每月一次 最少每季度一次 最少每年一次 5 50,40,主动取样的频率和限度 ( RCS),微生物数量级别 需氧菌 霉菌和酵母菌 厌氧菌 警报水平 行动水平 A. 无菌灌装 最少每季度一次 最少每年一次 0 0 - 最少每班一次 最终灭菌产品: 最少每周一次 闲置的无菌室 - 最少每周一次 B. 无菌灌装 最少每季度一次 最少每年一次 5 10 最少每班一次 最终灭菌产品: -最少每周一次 闲置的无菌室 -最少每周一次 C.最少每周一次 最少每季度一次 最少每年一次 30 100 D.最少每月一次 最少每季度一次 最少每年一次 20 200 E.最少每月一次 最少每季度一次 最少每年一次 220 500,41,4.5 人员监测,人是无菌环境中污染的主要来源。 培训/任职资格 培训/任职资格包括以下几方面 a. 人员的卫生/习惯 1.头发、皮肤、手指甲和衣服的清洁 2. 无化妆品、指甲油、修剪的手指甲、指甲胶、口香糖、糖果 3. 不允许吃东西、喝水、咀嚼口香糖或吸烟 b. 疾病 1. 报告所有感冒、流感、传染病、伤口、晒伤 2. 报告所有疾病或慢性皮肤病 c. 着装 1. 工厂或洁净区专用的统一洁净服 2. 不佩带手表或珠宝 3. 保护性衣服 d. 微生物的介绍 1. 微生物种类的一般来源 e. 无菌技术的介绍,f. 更衣程序 1. 人员更衣程序是经证明合适的(例如,未增加污染)。 2. 除前额、面罩、颈部、头后部、衣服拉练、手臂、手指日常监测点外,更衣程序还可包括其它取样点。 3. 日常监测可包括洁净服两前臂和两手手指的取样。所有侧面可能也需要进行评估。,42,再培训 a. 更衣证书 如果来自洁净服或手指涂抹的样品超过警报/行动水平,应在进入经批准的无菌区域时,对员工进行有关程序的再培训并再次证实合格。 b. 日常监测 如果来自洁净服或手指涂抹的样品超过行动水平,可能需要对员工进行有关程序的再培训或再次取样。 如果出现超过警报/行动水平的趋势,应考虑将该员工指派在无菌区域外担任新的职责。 所有在无菌环境中工作的员工都应接受再培训并再次证实合格。 所有与无菌生产有关的员工应至少每年参加一次模拟生产测试(培养基灌装)。,43,无菌室的人员 检验频率: 无菌灌装每班和所有有关人员,包括维修人员 最终灭菌产品 最少每周每班1位员工 监测点 限度 微生物数量 Class A: 警报水平: 0 cfu/25cm2; 行动水平: 0 cfu/25cm2 Class B: 警报水平: 1 cfu/25cm2; 行动水平: 5 cfu/25cm2 不得检出杆菌,革兰氏阴性菌,霉菌和酵母菌,44,45,4.6 产品或组分的生物负载,非无菌产品进行生物负载检验以确定其微生物总量。 仅生物负载量不能提供足够的信息。可能需要评估生物负载的耐热性或D值。 如果生物负载的耐热性超过了灭菌方法所能达到的限度,即使是在限度内的总生物负载量也可能引起重大问题。,46,47,谢 谢 !,Environmental Monitoring a practical approach,Dr. Bernd Kalkert Sep. 2nd, 2004,49,1. Introduction,The purpose of this document is to identify microbiological and particulate control concepts and principles as they relate to the manufacture of sterile pharmaceutical products. The concepts for sterile product manufacturing are the most stringent application,but these concepts can also be applied to non-sterile product manufacture. The focus is environment monitoring as it relates to facility control and compliance. This was compiled to aid in setting up a program that is meaningful,manageable, and defendable.,50,In order to ensure a consistently acceptable production environment, a comprehensive environmental control program should be supported by: a. sound facility design and maintenance b. documentation systems c. validated/qualified sanitization/disinfection procedures d. reliable process controls e. good housekeeping practices f. effective area access controls g. effective training, certification/qualification and evaluation programs h. quality assurance of materials and equipment Environmental surveillance is a tool utilized to evaluate the effect of controls on the manufacturing environment. A process to assess the clean room and other controlled environments of a pharmaceutical facility can serve as an adjunct to the sterility assurance program.,51,2. Environmental classification,The environmental monitoring program should be designed and implemented based on sound scientific principles and in conformance with the regulatory requirements of the government agencies regulating the manufacturing site. If the intent is to serve international markets the most stringent requirements should be evaluated as the basis of an environmental monitoring program.,52,53,54,55,3. Surveillance support,The personnel supervising the environmental monitoring program should be competent in the scientific discipline and have appropriate training and authority. Equipment used should be calibrated, systems should be appropriately validated, media should be properly prepared, and all operational procedures should be written and followed.,56,3.1 Cleaning & sanitization/disinfection,Implementation of cleaning and sanitization procedures is a critical component of overall facility control. Environmental monitoring data are used in determining the effectiveness of these procedures. Selection of sanitizers may include: a. evaluation of required contact time b. type of microorganisms that are to be eliminated c. confirmation of efficacy d. type of surface to be treated e. toxicity f . residue g. means of application Validation of established cleaning and sanitization procedures should demonstrate microbial reduction. The goal is to demonstrate that routine sanitization procedures, performed by trained cleaning personnel, consistently result in a level o microbial control suitable for the intended use of the area. It is a sound practice to perform challenge testing of the selected sanitizers/disinfectants with isolated routinely recovered by the environmental monitoring program.,57,3.2 Sample site selection,The primary purpose of sampling should be to provide meaningful data that can help identify actual or potential contamination problems associated with a)specific procedures; b)equipment; c)materials; d)processes. One should be able to sample those sites most likely to result in product contamination if they become contaminated; however, it may be prudent to identify indicator sites that are near, but not in contact with product.,58,Factors to consider in selecting sites for routine surveillance are: a. At which sites would microbial contamination most likely have an adverse effect on product quality? b. What sites would most likely demonstrate heaviest microbial proliferation during actual production? c. should some sites for routine monitoring be rotated? d. what sites would represent the most inaccessible or difficult areas to clean, sanitize, or disinfect? f. What activities in the area contribute to the spread of contamination? g. Would the act of sampling at a given site disturb the environment sufficiently to cause erroneous data to be collected or contaminate product? Should sampling only be performed at the end of the shift?,59,60,3.3 Sampling frequency,No single sampling scheme is appropriate for all environments. The key is to select monitoring frequencies that can identify potential system deficiencies. The test frequency per site may be less frequent than the system or area frequency. In many cases, monitoring performed in conjunction with batch production may fulfill the requirements for routine area monitoring.,61,3.4 Alert and action levels,Typically, the action levels will be driven by the regulatory or industry guidelines while the alert levels may be driven by historical analysis of the environmental monitoring data. Once alert and/or action levels have been established, they should be periodically reviewed as part of routine trend analysis. They are not extensions of product specifications, but are intended to flag changes so that corrective action may be taken before product quality is adversely affected. Not all situations require use of both alert and action levels. Typically, contamination in strictly controlled environments does not fall within a normal distribution.,62,3.5 Data management,Data collection: routine data may be pooled into a designated database in a consistent record format. Data analysis:,63,Data interpretation: Data generated should be summarized and evaluated to determine whether the production environment is in a state of control. Statistical process control is one method of performing this evaluation. Interpretation of the impact of a significant fluctuation in counts or a change in flora should be based on the experienced judgement of a qualified person. Considerations for assessing process state of control: a) Higher values than those currently imposed may be indicative of a process specification that is no longer appropriate. A review of the process may be needed. b) Several consecutive points or drifts may be considered to be a pattern or cluster formation that, if above the alert level, signals a trend that requires an investigation. c) Significant fluctuations or jumps in the values for the process ar

    注意事项

    本文(动态下环境监测DrBerndKalkert.ppt)为本站会员(本田雅阁)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    经营许可证编号:宁ICP备18001539号-1

    三一文库
    收起
    展开