欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    绝对值的三角不等式典型例题.doc

    • 资源ID:127199       资源大小:418.91KB        全文页数:7页
    • 资源格式: DOC        下载积分:5
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要5
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    绝对值的三角不等式典型例题.doc

    1、1.4绝对值三角不等式教学目标:1.理解绝对值的定义,理解不等式基本性质的推导过程;2.掌握定理1的两种证明思路及其几何意义; 3.理解绝对值三角不等式; 4.会用绝对值不等式解决一些简单问题。教学重点:定理1的证明及几何意义。教学难点:换元思想的渗透。教学过程:一、引入:证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质:(1) (2)(3) (4)请同学们思考一下,是否可以用绝对值的几何意义说明上述性质存在的道理?实际上,性质和可以从正负数和零的乘法、除法法则直接推出;而绝对值的差的性质可以利用和的性质导出。因此,只要能够证明对

    2、于任意实数都成立即可。我们将在下面的例题中研究它的证明。现在请同学们讨论一个问题:设为实数,和哪个大?显然,当且仅当时等号成立(即在时,等号成立。在时,等号不成立)。同样,当且仅当时,等号成立。含有绝对值的不等式的证明中,常常利用、及绝对值的和的性质。二、典型例题:例1、证明 (1), (2)。证明(1)如果那么所以如果那么所以 (2)根据(1)的结果,有,就是,。 所以,。例2、证明 。例3、证明 。思考:如何利用数轴给出例3的几何解释?(设A,B,C为数轴上的3个点,分别表示数a,b,c,则线段当且仅当C在A,B之间时,等号成立。这就是上面的例3。特别的,取c0(即C为原点),就得到例2的

    3、后半部分。)探究:试利用绝对值的几何意义,给出不等式的几何解释?定理1 如果, 那么. 在上面不等式中,用向量分别替换实数, 则当不共线时, 由向量加法三角形法则: 向量构成三角形, 因此有a+ba+b 其几何意义是什么?含有绝对值的不等式常常相加减,得到较为复杂的不等式,这就需要利用例1,例2和例3的结果来证明。例4、已知 ,求证 证明 (1), (2)由(1),(2)得:例5、已知 求证:。证明 ,由例1及上式,。注意: 在推理比较简单时,我们常常将几个不等式连在一起写。但这种写法,只能用于不等号方向相同的不等式。四、巩固性练习:1、已知求证:。2、已知求证:。作业:习题1.2 2、3、5

    4、1.4绝对值三角不等式学案 预习目标: 1.理解绝对值的定义,理解不等式基本性质的推导过程;2.了解定理1的两种证明思路及其几何意义; 3.理解绝对值三角不等式。预习内容: 1绝对值的定义:, 2. 绝对值的几何意义: 10. 实数的绝对值,表示数轴上坐标为的点A 20. 两个实数,它们在数轴上对应的点分别为, 那么的几何意义是 3.定理1的内容是什么?其证法有几种?4.若实数分别换成向量定理1还成立吗?5、定理2是怎么利用定理1证明的?探究学习:1、绝对值的定义的应用例1 设函数 解不等式;求函数的最值 2. 绝对值三角不等式:探究,之间的关系. 时,如下图, 容易得:. 时,如图, 容易得

    5、 时,显然有:. 综上,得定理1 如果, 那么. 当且仅当 时, 等号成立. 在上面不等式中,用向量分别替换实数, 则当不共线时, 由向量加法三角形法则: 向量构成三角形, 因此有 它的几何意义就是: 定理1的证明:定理2 如果, 那么. 当且仅当 时, 等号成立.3、定理应用 例2 (1)证明, (2)已知 ,求证 。课后练习 : 当 成立的充要条件是A B C D对任意实数,恒成立,则的取值范围是 ;对任意实数,恒成立,则的取值范围是 若关于的不等式的解集不是空集,则的取值范围是 方程的解集为 ,不等式的解集是 已知方程有实数解,则a的取值范围为 。 画出不等式的图形,并指出其解的范围

    6、利用不等式的图形解不等式 1、; 2、解不等式:1、; 2、; 3、 ; 4、 1、已知 求证:。 2、已知求证:。3、已知 求证: 1、已知 求证: 2、已知 求证: 参考答案:课后练习 B. 2、a3 3 、a44、a75、-3x=-2或x=0x26、-3=a-17、先考虑不等式在平面直角坐标系内第一象限的情况。在第一象限内不等式等价于: ,.其图形是由第一象限中直线下方的点所组成。同样可画出二、三、四象限的情况。从而得到不等式的图形是以原点O为中心,四个等点分别在坐标轴上的正方形。不等式解的范围一目了然。探究:利用不等式的图形解不等式 1. ; 2答案:1、-0.5x0.5 2.为一菱形区域。8、1、0x-1/2 3、x0 4、x-2 1、已知 求证:。证明 , 由例1及上式,。 2、 3(解答略) 10、(解答略)


    注意事项

    本文(绝对值的三角不等式典型例题.doc)为本站会员(奥沙丽水)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!




    宁ICP备18001539号-1

    三一文库
    收起
    展开