1、绝对值不等式性质及解法考纲要求考纲要求二、绝对值不等式1、绝对值三角不等式 O=a(a0)A(a)x|a|xA(a)B(b)|a-b|任意两个实数a,b在数轴上的对应点分别为A、B,那么|a-b|的几何意义是A、B两点间的距离。实数a的绝对值|a|的几何意义是表示数轴上坐标为a的点A到原点的距离:=-a(a0、ab0时,如下图可得|a+b|=|a|+|b|(2)当ab0,b0,如下图可得:|a+b|a|+|b|Obaxa+b如果a0,如下图可得:|a+b|00,|x-a|x-a|,|,|y-by-b|,求证:,求证:|2x+3y-2a-3b|5|2x+3y-2a-3b|5.证明:|2x+3y-
2、2a-3b|=|(2x-2a)+(3y-3b)|=|2(x-a)+3(y-b)|2(x-a)|+|3(y-b)|=2|x-a|+3|y-b|2+3=5.所以所以|2x+3y-2a-3b|5|2x+3y-2a-3b|0,则|x|a的解集是(-,-a)(a,+)Oa-axO-aax|x|a(1)|ax+b|c和|ax+b|c(c0)型不等式的解法:换元法:令t=ax+b,转化为|t|c和|t|c型不等式,然后再求x,得原不等式的解集。分段讨论法:例3 解不等式|3x-1|2例4 解不等式|2-3x|7补充例题:解不等式|ax+b|c(c0)型不等式比较:类型化去绝对值后集合上解的意义区别|ax+b|c-cax+b-c x|ax+bcax+bcx|ax+bc,并 课堂练习:P20第6题x12-2-3ABA1B1yxO-32-2利用绝对值不等式的几何意义利用绝对值不等式的几何意义零点分区间法零点分区间法构造函数法构造函数法作业:作业:P20第第7题、第题、第8题题(1)(3)练习:练习:P20第第8题题(2)补充练习:解不等式:(1)1|2x+1|3.(2)|x-1|-4|x+3.答案:(1)x|0 x1或-2x-1 (2)x|-5x-1或3x7 (3)作业作业8.解不等式解不等式: