欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    高中高考数学所有二级结论完整版.docx

    • 资源ID:142740       资源大小:258.50KB        全文页数:8页
    • 资源格式: DOCX        下载积分:5
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要5
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高中高考数学所有二级结论完整版.docx

    1、高中数学二级结论1. 任意的简单n面体内切球半径为(V是简单n面体的体积,是简单n面体的表面积)2.在任意内,都有tanA+tanB+tanC=tanAtanBtanC推论:在内,若tanA+tanB+tanC0,则为钝角三角形3. 斜二测画法直观图面积为原图形面积的倍4. 过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点5. 导数题常用放缩、6. 椭圆的面积S为7. 圆锥曲线的切线方程求法:隐函数求导推论:过圆上任意一点的切线方程为过椭圆上任意一点的切线方程为过双曲线上任意一点的切线方程为8. 切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点

    2、弦方程圆的切点弦方程为椭圆的切点弦方程为双曲线的切点弦方程为抛物线的切点弦方程为二次曲线的切点弦方程为9. 椭圆与直线相切的条件是双曲线与直线相切的条件是10. 若A、B、C、D是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC、BD的斜率存在且不等于零,并有,(,分别表示AC和BD的斜率)11. 已知椭圆方程为,两焦点分别为,设焦点三角形中,则()12. 椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为的点P的距离)公式13. 已知,为过原点的直线,的斜率,其中是和的角平分线,则,满足下述转化关系:,14. 任意满足的二次方程,过函数上一点的切线方程为1

    3、5. 已知f(x)的渐近线方程为y=ax+b,则,16. 椭圆绕Ox坐标轴旋转所得的旋转体的体积为17. 平行四边形对角线平方之和等于四条边平方之和18. 在锐角三角形中19. 函数f(x)具有对称轴,则f(x)为周期函数且一个正周期为20. y=kx+m与椭圆相交于两点,则纵坐标之和为21. 已知三角形三边x,y,z,求面积可用下述方法(一些情况下比海伦公式更实用,如,)22. 圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F距离与到定直线间距离之比为常数e(即椭圆的偏心率,)的点的集合(定点F不在定直线上,该常数为小于1的正数)双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线23. 到角公式:若把直线依逆时针方向旋转到与第一次重合时所转的角是,则24. A、B、C三点共线(同时除以m+n)25. 过双曲线上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为 26. 反比例函数为双曲线,其焦点为和,kn时,


    注意事项

    本文(高中高考数学所有二级结论完整版.docx)为本站会员(田海滨)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!




    宁ICP备18001539号-1

    三一文库
    收起
    展开