欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    dqn算法步骤.docx

    • 资源ID:151211       资源大小:15.53KB        全文页数:2页
    • 资源格式: DOCX        下载积分:5
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要5
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    dqn算法步骤.docx

    1、dqn算法步骤深度Q网络(DQN)算法是深度学习中用于解决强化学习问题的一种方法。以下是其详细步骤:1 .初始化replaymemoryD:这个内存是一个存储经验回放的缓冲区,容量为N。每一个经验回放是一个四元组(s,a,r,s),其中S是状态,a是动作,r是奖励,s是下一个状态。2 .初始化Q值网络:使用一个深度神经网络作为Q值网络,并初始化其权重参数。这个网络将接收游戏的状态作为输入,并输出每个动作的Q值。3 .设定游戏片段总数M:这是整个强化学习过程要进行的总的游戏片段数量。4 .初始化网络输入:对于每一个游戏片段,首先需要初始化网络的输入。这个输入通常是一个大小为84x84x4的张量,

    2、其中包含了当前游戏画面的RGB值以及一个额外的通道用于表示该画面是否是游戏的开始画面。然后,通过网络计算出每个动作的Q值,选择具有最大Q值的动作执行。5 .选择动作:以一定的概率随机选择动作,或者根据当前状态下的Q值选择动作。这种策略被称为-greedy策略,其中是随机选择的概率。6 .执行动作并获得反馈:将选择的动作执行在游戏中,并获得游戏给出的奖励以及下一个状态。7 .计算下一个状态的Q值:使用当前网络的输出作为下一个状态的Q值。8 .将状态和经验回放存入replaymemoryD:将当前状态以及获得的所有信息存入replaymemoryD中。9 .从replaymemoryD中随机抽取minibatch的经验回放:每次从replaymemoryD中随机抽取minibatch个经验回放用于训练。10 .计算目标值:对于每一个抽取的经验回放,计算其目标值(即执行动作后的奖励加上下一个状态的Q值)。IL更新Q值网络:使用随机梯度下降(SGD)算法更新Q值网络的权重,以最小化预测的Q值与目标值之间的差异。通过以上步骤,DQN算法能够在强化学习问题中实现高效的学习和优化。


    注意事项

    本文(dqn算法步骤.docx)为本站会员(飞猪)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!




    宁ICP备18001539号-1

    三一文库
    收起
    展开