欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 研究报告>
  • 工作总结>
  • 合同范本>
  • 心得体会>
  • 工作报告>
  • 党团相关>
  • 幼儿/小学教育>
  • 高等教育>
  • 经济/贸易/财会>
  • 建筑/环境>
  • 金融/证券>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > PPT文档下载
     

    微机原理第02章1.ppt

    • 资源ID:3195669       资源大小:952.51KB        全文页数:53页
    • 资源格式: PPT        下载积分:8
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录   微博登录  
    二维码
    微信扫一扫登录
    下载资源需要8
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    微机原理第02章1.ppt

    第2章,第2章:微处理器指令系统-教学重点,8088/8086的寻址方式 8088/8086的基本指令 数据传送 加减运算 逻辑运算、移位 控制转移、功能调用 汇编语言程序段,第2章:2.1 微处理器的内部结构,从应用角度(不是从内部工作原理)展开 典型8位微处理器的基本结构 8088/8086的功能结构 8088/8086的寄存器结构 8088/8086的存储器结构 为学习指令系统打好基础,例如:关心用户“可编程”寄存器, 不关心无法操纵的“透明”寄存器,第2章: 2.1.1 微处理器的基本结构,1.算术逻辑单元(运算器) 2.寄存器组 3.指令处理单元(控制器),第2章: 2.1.2 8088/8086的功能结构,8088的内部结构从功能上分成两个单元 1. 总线接口单元BIU 管理8088与系统总线的接口 负责CPU对存储器和外设进行访问 2. 执行单元EU 负责指令的译码、执行和数据的运算 两个单元相互独立,分别完成各自操作,还可以并行执行,实现指令预取(指令读取和执行的流水线操作),第2章:2.1.3 8088/8086的寄存器结构,8088/8086的寄存器组有 8个通用寄存器 4个段寄存器 1个标志寄存器 1个指令指针寄存器 他们均为16位!,图示,汇编语言程序员看到的处理器,就是寄存器 所以,一定要熟悉这些寄存器的名称和作用,第2章:1. 通用寄存器,8088有8个通用的16位寄存器 (1)数据寄存器: AX BX CX DX (2)变址寄存器: SI DI (3)指针寄存器: BP SP 4个数据寄存器还可以分成高8位和低8位两个独立的寄存器,这样又形成8个通用的8位寄存器 AX: AH AL BX: BH BL CX: CH CL DX: DH DL,第2章:(1)数据寄存器,AX称为累加器(Accumulator) 使用频度最高。用于算术、逻辑运算以及与外设传送信息等 BX称为基址寄存器(Base address Register) 常用做存放存储器地址 CX称为计数器(Counter) 作为循环和串操作等指令中的隐含计数器 DX称为数据寄存器(Data register) 常用来存放双字长数据的高16位,或存放外设端口地址,第2章:(1)数据寄存器,AX称为累加器(Accumulator) 使用频度最高。用于算术、逻辑运算以及与外设传送信息等 BX称为基址寄存器(Base address Register) 常用做存放存储器地址 CX称为计数器(Counter) 作为循环和串操作等指令中的隐含计数器 DX称为数据寄存器(Data register) 常用来存放双字长数据的高16位,或存放外设端口地址,第2章:(2)变址寄存器,16位变址寄存器SI和DI 常用于存储器变址寻址方式时提供地址 SI是源地址寄存器(Source Index) DI是目的地址寄存器(Destination Index) 在串操作类指令中,SI、DI还有较特殊的用法,现在不必完全理解,以后会详细展开,第2章:(3)指针寄存器,指针寄存器用于寻址内存堆栈内的数据 SP为堆栈指针寄存器(Stack Pointer),指示堆栈段栈顶的位置(偏移地址) BP为基址指针寄存器(Base Pointer),表示数据在堆栈段中的基地址 SP和BP寄存器与SS段寄存器联合使用以确定堆栈段中的存储单元地址,堆栈(Stack)是主存中一个特殊的区域,采用“先进后出”或“后进先出”存取操作方式、而不是随机存取方式。 用8088/8086形成的微机系统中,堆栈区域被称为堆栈段,第2章:2. 指令指针寄存器,IP(Instruction Pointer)为指令指针寄存器,指示主存储器指令的位置 随着指令的执行,IP将自动修改以指示下一条指令所在的存储器位置 IP寄存器是一个专用寄存器 IP寄存器与CS段寄存器联合使用以确定下一条指令的存储单元地址,第2章:3. 标志寄存器,标志(Flag)用于反映指令执行结果或控制指令执行形式 8088处理器的各种标志形成了一个16位的标志寄存器FLAGS(程序状态字PSW寄存器),程序设计需要利用标志的状态,第2章:标志寄存器-分类,状态标志用来记录程序运行结果的状态信息,许多指令的执行都将相应地设置它 CF ZF SF PF OF AF 控制标志可由程序根据需要用指令设置,用于控制处理器执行指令的方式 DF IF TF,标志寄存器FLAGS,第2章:进位标志CF(Carry Flag),当运算结果的最高有效位有进位(加法)或借位(减法)时,进位标志置1,即CF1; 否则CF0,3AH + 7CHB6H,没有进位:CF = 0 AAH + 7CH(1)26H,有进位:CF = 1,第2章:零标志ZF(Zero Flag),若运算结果为0,则ZF1; 否则ZF0,3AH7CHB6H,结果不是零:ZF0 84H7CH(1)00H,结果是零:ZF1,注意:ZF为1表示的结果是0,第2章:符号标志SF(Sign Flag),运算结果最高位为1,则SF1; 否则SF0,3AH7CHB6H,最高位D71:SF1 84H7CH(1)00H,最高位D70:SF0,有符号数据用最高有效位表示数据的符号 所以,最高有效位就是符号标志的状态,第2章:奇偶标志PF(Parity Flag),当运算结果最低字节中“1”的个数为零或偶数时,PF1;否则PF0,3AH7CHB6H10110110B 结果中有5个“1”,是奇数:PF0,PF标志仅反映最低8位中“1”的个数是 偶或奇,即使是进行16位字操作,第2章:溢出标志OF(Overflow Flag),若算术运算的结果有溢出,则OF1; 否则 OF0,3AH + 7CHB6H,产生溢出:OF1 AAH + 7CH(1)26H,没有溢出:OF0,?,第2章:什么是溢出?,处理器内部以补码表示有符号数 8位表达的整数范围是:127 128 16位表达的范围是:32767 32768 如果运算结果超出这个范围,就产生了溢出 有溢出,说明有符号数的运算结果不正确,3AH7CHB6H,就是58124182, 已经超出128127范围,产生溢出,故OF1;补码B6H表达真值是74,显然运算结果也不正确,B6H10110110B,最高位为1, 作为有符号数是负数 对B6H求反加1等于: 01001001B101001010B4AH74 所以,B6H表达有符号数的真值为74,第2章:溢出和进位的区别,溢出标志OF和进位标志CF是两个意义不同的标志 进位标志表示无符号数运算结果是否超出范围,运算结果仍然正确 溢出标志表示有符号数运算结果是否超出范围,运算结果已经不正确,?,第2章: 溢出和进位的对比,例1:3AH7CHB6H 无符号数运算: 58124182 范围内,无进位 有符号数运算: 58124182 范围外,有溢出,例2:AAH7CH(1)26H 无符号数运算: 170124294 范围外,有进位 有符号数运算: 8612428 范围内,无溢出,第2章:溢出和进位的应用场合,处理器对两个操作数进行运算时,按照无符号数求得结果,并相应设置进位标志CF;同时,根据是否超出有符号数的范围设置溢出标志OF 应该利用哪个标志,则由程序员来决定。也就是说,如果将参加运算的操作数认为是无符号数,就应该关心进位;认为是有符号数,则要注意是否溢出,第2章:溢出的判断,判断运算结果是否溢出有一个简单的规则: 只有当两个相同符号数相加(包括不同符号数相减),而运算结果的符号与原数据符号相反时,产生溢出;因为,此时的运算结果显然不正确 其他情况下,则不会产生溢出,例1:3AH7CHB6H 溢出 例2:AAH7CH 无溢出 例3:3AH7CH 无溢出 例4:AAH7CH2DH 溢出,第2章:辅助进位标志AF(Auxiliary Carry Flag),3AH7CHB6H,D3有进位:AF1,运算时D3位(低半字节)有进位或借位时,AF1;否则AF0,这个标志主要由处理器内部使用, 用于十进制算术运算调整指令中, 用户一般不必关心,第2章:方向标志DF(Direction Flag),用于串操作指令中,控制地址的变化方向: 设置DF0,存储器地址自动增加; 设置DF1,存储器地址自动减少,CLD指令复位方向标志:DF0 STD指令置位方向标志:DF1,第2章:中断允许标志IF(Interrupt-enable Flag),控制可屏蔽中断是否可以被处理器响应: 设置IF1,则允许中断; 设置IF0,则禁止中断,CLI指令复位中断标志:IF0 STI指令置位中断标志:IF1,第2章:陷阱标志TF(Trap Flag),用于控制处理器进入单步操作方式: 设置TF0,处理器正常工作; 设置TF1,处理器单步执行指令,单步执行指令处理器在每条指令执行结束时,便产生一个编号为1的内部中断 这种内部中断称为单步中断 所以TF也称为单步标志 利用单步中断可对程序进行逐条指令的调试 这种逐条指令调试程序的方法就是单步调试,第2章:2.1.4 8088/8086的存储器结构,存储器是计算机存储信息的地方。掌握数据存储格式,以及存储器的分段管理对以后的汇编程序设计非常重要 你能区别寄存器、存储器(主存)、外存(包括硬盘、光盘、磁带等存储介质)吗?,答案,第2章:寄存器、存储器和外存的区别,寄存器是微处理器(CPU)内部暂存数据的存储单元,以名称表示,例如:AX,BX.等 存储器也就是平时所说的主存,也叫内存,可直接与CPU进行数据交换。主存利用地址区别 外存主要指用来长久保存数据的外部存储介质,常见的有硬盘、光盘、磁带、U盘等。外存的数据只能通过主存间接地与CPU交换数据 程序及其数据可以长久存放在外存,在运行需要时才进入主存,第2章:1. 数据的存储格式,计算机中信息的单位 二进制位Bit:存储一位二进制数:0或1 字节Byte:8个二进制位,D7D0 字Word:16位,2个字节,D15D0 双字DWord:32位,4个字节,D31D0 最低有效位LSB:数据的最低位,D0位 最高有效位MSB:数据的最高位,对应字节、字、双字分别指D7、D15、D31位,图示,第2章:存储单元及其存储内容,每个存储单元都有一个编号;被称为存储器地址 每个存储单元存放一个字节的内容,图示,0002H单元存放有一个数据34H 表达为 0002H34H,第2章:多字节数据存放方式,多字节数据在存储器中占连续的多个存储单元: 存放时,低字节存入低地址,高字节存入高地址; 表达时,用它的低地址表示多字节数据占据的地址空间。,图2-5中0002H“字”单元的内容为: 0002H = 1234H 0002H号“双字”单元的内容为: 0002H = 78561234H,80x86处理器采用“低对低、高对高”的存储形式,被称为“小端方式Little Endian”。 相对应还存在“大端方式Big Endian”。,图示,第2章:数据的地址对齐,同一个存储器地址可以是字节单元地址、字单元地址、双字单元地址等等(视具体情况来确定) 字单元安排在偶地址(xxx0B)、双字单元安排在模4地址(xx00B)等,被称为“地址对齐(Align)” 对于不对齐地址的数据,处理器访问时,需要额外的访问存储器时间 应该将数据的地址对齐,以取得较高的存取速度,第2章:2. 存储器的分段管理,8088CPU有20条地址线 最大可寻址空间为2201MB 物理地址范围从00000HFFFFFH 8088CPU将1MB空间分成许多逻辑段(Segment) 每个段最大限制为64KB 段地址的低4位为0000B 这样,一个存储单元除具有一个唯一的物理地址外,还具有多个逻辑地址,第2章:物理地址和逻辑地址,8088CPU存储系统中,对应每个物理存储单元都有一个唯一的20位编号,就是物理地址,从00000H FFFFFH 分段后在用户编程时,采用逻辑地址,形式为 段基地址 : 段内偏移地址,分隔符,物理地址 14700H 逻辑地址 1460H:100H,第2章:逻辑地址,段地址说明逻辑段在主存中的起始位置 8088规定段地址必须是模16地址:xxxx0H 省略低4位0000B,段地址就可以用16位数据表示,就能用16位段寄存器表达段地址 偏移地址说明主存单元距离段起始位置的偏移量 每段不超过64KB,偏移地址也可用16位数据表示,第2章:物理地址和逻辑地址的转换,将逻辑地址中的段地址左移4位,加上偏移地址就得到20位物理地址 一个物理地址可以有多个逻辑地址,逻辑地址 1460:100、1380:F00 物理地址 14700H 14700H,第2章:3. 段寄存器,8088有4个16位段寄存器 CS(代码段)指明代码段的起始地址 SS(堆栈段)指明堆栈段的起始地址 DS(数据段)指明数据段的起始地址 ES(附加段)指明附加段的起始地址 每个段寄存器用来确定一个逻辑段的起始地址,每种逻辑段均有各自的用途,第2章:代码段寄存器CS(Code Segment),代码段用来存放程序的指令序列 代码段寄存器CS存放代码段的段地址 指令指针寄存器IP指示下条指令的偏移地址 处理器利用CS:IP取得下一条要执行的指令,第2章:堆栈段寄存器SS(Stack Segment),堆栈段确定堆栈所在的主存区域 堆栈段寄存器SS存放堆栈段的段地址 堆栈指针寄存器SP指示堆栈栈顶的偏移地址 处理器利用SS:SP操作堆栈顶的数据,第2章:数据段寄存器DS(Data Segment),数据段存放运行程序所用的数据 数据段寄存器DS存放数据段的段地址 各种主存寻址方式(有效地址EA)得到存储器中操作数的偏移地址 处理器利用DS:EA存取数据段中的数据,第2章:附加段寄存器ES(Extra Segment),附加段是附加的数据段,也保存数据: 附加段寄存器ES存放附加段的段地址 各种主存寻址方式(有效地址EA)得到存储器中操作数的偏移地址 处理器利用ES:EA存取附加段中的数据 串操作指令将附加段作为其目的操作数的存放区域,第2章:如何分配各个逻辑段,程序的指令序列必须安排在代码段 程序使用的堆栈一定在堆栈段 程序中的数据默认是安排在数据段,也经常安排在附加段,尤其是串操作的目的区必须是附加段 数据的存放比较灵活,实际上可以存放在任何一种逻辑段中,演示,第2章:段超越前缀指令,没有指明时,一般的数据访问在DS段;使用BP访问主存,则在SS段 默认的情况允许改变,需要使用段超越前缀指令;8088指令系统中有4个: CS: ;代码段超越,使用代码段的数据 SS: ;堆栈段超越,使用堆栈段的数据 DS: ;数据段超越,使用数据段的数据 ES: ;附加段超越,使用附加段的数据,第2章:段超越的示例,没有段超越的指令实例: MOV AX,2000H ;AXDS:2000H ;从默认的DS数据段取出数据 采用段超越前缀的指令实例: MOV AX,ES:2000H;AXES:2000H ;从指定的ES附加段取出数据,第2章:段寄存器的使用规定,第2章:寄存器的总结,8088有8个8位通用寄存器、8个16位通用寄存器 如图 8088有6个状态标志和3个控制标志 8088将1MB存储空间分段管理,有4个段寄存器,对应4种逻辑段 8088有4个段超越前缀指令,用于明确指定数据所在的逻辑段,熟悉上述内容后,就可以进入下节,8088的内部结构,8088的指令执行过程,图2-5 8088的存储格式,低地址,LSB,MSB,逻辑段的分配,返回,

    注意事项

    本文(微机原理第02章1.ppt)为本站会员(本田雅阁)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    经营许可证编号:宁ICP备18001539号-1

    三一文库
    收起
    展开