欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 研究报告>
  • 工作总结>
  • 合同范本>
  • 心得体会>
  • 工作报告>
  • 党团相关>
  • 幼儿/小学教育>
  • 高等教育>
  • 经济/贸易/财会>
  • 建筑/环境>
  • 金融/证券>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > PDF文档下载
     

    IEEE-1584-INT-1-3-2008.pdf

    • 资源ID:3769256       资源大小:80.36KB        全文页数:4页
    • 资源格式: PDF        下载积分:2
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录   微博登录  
    二维码
    微信扫一扫登录
    下载资源需要2
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    IEEE-1584-INT-1-3-2008.pdf

    IEEE Std 1584-2002_Interpretation IEEE Standards Interpretation for IEEE Std 1584 -2002 IEEE Guide for Performing Arc-Flash Hazard Calculations Copyright © 2008 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park Avenue New York, New York 10016-5997 USA All Rights Reserved. This is an interpretation of IEEE Std 1584-2002. Interpretations are issued to explain and clarify the intent of a standard and are not intended to constitute an alteration to the original standard or to supply consulting information. Permission is hereby granted to download and print one copy of this document. Individuals seeking permission to reproduce and/or distribute this document in its entirety or portions of this document must contact the IEEE Standard Department for the appropriate license. Use of the information contained in this document is at your own risk. IEEE Standards Department Copyrights and Permissions 445 Hoes Lane Piscataway, New Jersey 08855-1331, USA December 2008 Interpretation #1 Is there an accepted practice or method in which incident energies can be lowered, therefore lowering the PPE category? http:/standards.ieee.org/reading/ieee/interp/1584-2002.html (1 of 4) 2009/01/06 9:09:11 PM Copyright The Institute of Electrical and Electronics Engineers, Inc. Provided by IHS under license with IEEELicensee=HP Monitoring/1111111164 Not for Resale, 02/06/2009 01:55:55 MSTNo reproduction or networking permitted without license from IHS -,-,- IEEE Std 1584-2002_Interpretation Interpretation Response #1 The answer is IEEE Std 1584-2002 does not address practices or methods of lowering the incident energy because it would be outside the scope of this edition. However, the question is of great interest to users of the Guide and it will be addressed in the next edition. In the meantime, information on the subject is available from IEEE papers presented at the 2002 and 2003 PCIC Conferences. The papers are available in the PCIC record. The next opportunities to learn how people are solving this problem will be at the 2004 IAS Electrical Safety Workshop and at the 2004 IAS PCIC Conference. There are, in fact, many ways to reduce incident energy. Interpretation #2 An interpretation of IEEE Std 1584-2002 “Guide for Performing Arc-Flash Hazard Calculations“ is requested. In 5.1, 7.5, and 9.1 the criteria for the model for incident energy calculations includes “Bolted fault current in the range of 700A-106,000A.“ What is the significance of “700A,“ the lower limit of the range. Is there a particular reason why it is 700A, and not 600A, 500A, 400A, etc.? Several arc flash studies are currently being conducted in which the bolted fault current for a few busses is lower than 700A. The software tools used to conduct the studies make it clear that this fault level is outside of the range of IEEE 1584 and leave it at that. How to treat these situations is uncertain. Can it be concluded, for example, that incident energy is low and would be always be classed as NFPA 70E 2004, Category 0 (i.e. less than 2.00 cal/cm2)? Interpretation Response #2 The model in the Guide was empirically derived, i.e., it was developed through statistical analysis of test data. This type of model has no defined accuracy outside the range of the test data and, in fact, it can give obviously incorrect calculation results outside the stated range of the model the lower limit of 700A is based. In answer to your question on applications where the bolted fault current is below 700A, note that the Guide offers two models. The Lee Model can be applied outside the range of the empirically derived model. Note also that Annex B suggests a limit to arc duration may be applied, depending on the application. http:/standards.ieee.org/reading/ieee/interp/1584-2002.html (2 of 4) 2009/01/06 9:09:11 PM Copyright The Institute of Electrical and Electronics Engineers, Inc. Provided by IHS under license with IEEELicensee=HP Monitoring/1111111164 Not for Resale, 02/06/2009 01:55:55 MSTNo reproduction or networking permitted without license from IHS -,-,- IEEE Std 1584-2002_Interpretation Recognize that the Guide is just a guide and engineering judgment must be applied when performing an arc flash hazard calculations study. Interpretation #3 Topic: Accuracy of material in IEEE 1584-2002 and amendment IEEE 1584a-2004 Relevant Clauses: Section 9.5 and Equation 5.3(4) Section 9.5 states: “Two grounding classes are applied in the equations considered, as follows: a) Ungrounded, which included ungrounded, high-resistance grounding and low-resistance grounding. b) Solidly grounded.” We have a system with a resistance grounded secondary on a 750kVA transformer. In line with the statements above, the incident energy level determined by our software tools for the secondary side is significantly higher (about 30%) for resistance grounding than the scenario where the transformer is modeled as having solid grounding. This seems to be contrary to statements in other standards concerning resistance grounding as referenced below. Perhaps the key consideration is phase-to-ground fault versus three-phase fault. Clarification would be appreciated, since it would seem that solidly grounding the secondary would improve arc flash hazards as per above, while resistance grounding is recommended below. IEEE Std 141-1993 (Red Book) section 7.2.4 states “A safety hazard exists for solidly grounded systems from the severe flash, arc burning, and blast hazard from any phase-to-ground fault.“ For this reason, IEEE recommends resistance grounding. IEEE Std 142-1991 (Green Book) section 1.4.3 states “The reasons for limiting the current by resistance grounding may be one or more of the following: 1) To reduce burning and melting effects in faulted electric equipment, such as switchgear, transformers, cables, and rotating machines. 2) To reduce mechanical stresses in circuits and apparatus carrying fault currents. 3) To reduce electric-shock hazards to personnel caused by stray ground-fault currents in the ground return path. 4) To reduce the arc blast or flash hazard to personnel who may have accidentally caused or who happen to be in close proximity to the ground fault. 5) To reduce the momentary line-voltage dip occasioned by the clearing of a ground fault. 6) To secure control of transient over-voltages while at the same time avoiding the shutdown of a faulty circuit on the occurrence of the first ground fault (high resistance grounding). http:/standards.ieee.org/reading/ieee/interp/1584-2002.html (3 of 4) 2009/01/06 9:09:11 PM Copyright The Institute of Electrical and Electronics Engineers, Inc. Provided by IHS under license with IEEELicensee=HP Monitoring/1111111164 Not for Resale, 02/06/2009 01:55:55 MSTNo reproduction or networking permitted without license from IHS -,-,- IEEE Std 1584-2002_Interpretation IEEE Std 141-1993 (Red Book) section 7.2.2 states “There is no arc flash hazard, as there is with solidly grounded systems, since the fault current is limited to approximately 5A.“ Interpretation Response #3 I agree with your assessment that IEEE std 1584 seems to be contrary to statements in the other standards you cited, but appearances sometimes deceive. Each statement you quote from a standard is correct and your two calculations show the difference in results that I would expect. The IEEE 1584 statement is based on three-phase testing with ungrounded and grounded systems and analysis of the results. This is because it is recognized that arc power is higher in three phase faults than in line-to-line or ground faults and single phase faults often escalate to become three-phase faults. IEEE 1584 considers only that worst case. The other two standards you quote are discussing only ground faults, based on the fact that most faults begin as ground faults. If fault current can be limited, the fault is not likely to escalate to become a three phase fault. Arc fault energy will be quite small by comparison to the three phase fault case. However, even with resistance grounding, a three phase fault is still possible and so it must be considered when calculating incident energy. Back to Available IEEE Standards Interpretations Online © Copyright IEEE-SA Contact IEEE-SA For questions or comments, please contact the IEEE-SA Webmaster. http:/standards.ieee.org/reading/ieee/interp/1584-2002.html (4 of 4) 2009/01/06 9:09:11 PM Copyright The Institute of Electrical and Electronics Engineers, Inc. Provided by IHS under license with IEEELicensee=HP Monitoring/1111111164 Not for Resale, 02/06/2009 01:55:55 MSTNo reproduction or networking permitted without license from IHS -,-,-

    注意事项

    本文(IEEE-1584-INT-1-3-2008.pdf)为本站会员(哈尼dd)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    经营许可证编号:宁ICP备18001539号-1

    三一文库
    收起
    展开