欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 研究报告>
  • 工作总结>
  • 合同范本>
  • 心得体会>
  • 工作报告>
  • 党团相关>
  • 幼儿/小学教育>
  • 高等教育>
  • 经济/贸易/财会>
  • 建筑/环境>
  • 金融/证券>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > PDF文档下载
     

    sfpe handbook of Fire Protection Engineering:Appendices.pdf

    • 资源ID:3794130       资源大小:342.65KB        全文页数:54页
    • 资源格式: PDF        下载积分:8
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录   微博登录  
    二维码
    微信扫一扫登录
    下载资源需要8
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    sfpe handbook of Fire Protection Engineering:Appendices.pdf

    SFPE Handbook of Fire Protection Engineering Third Edition Editorial Staff Philip J. DiNenno, P.E. (Hughes Associates, Inc.), Editor-in-Chief Dougal Drysdale, PhD. (University of Edinburgh), Section 1 Craig L. Beyler, PhD. (Hughes Associates, Inc.), Section 2 W. Douglas Walton, P.E. (National Institute of Standards and Technology), Section 3 Richard L. P. Custer (Arup Fire USA), Section 4 John R. Hall, Jr., PhD. (National Fire Protection Association), Section 5 John M. Watts, Jr., PhD. (The Fire Safety Institute), Section 5 National Fire Protection Association Quincy, Massachusetts Society of Fire Protection Engineers Bethesda, Maryland FM.QXD 3/3/2003 4:26 PM Page iii Appendices Contents Appendix AConversion Factors Table A.1Names and Symbols of SI Units Table A.2Definitions of SI Units Table A.3SI Prefixes Table A.4Physical Constants Table A.5Alphabetical Listing of Conversion Factors Table A.6Listing Conversion Factors by Physical Quantity Conversion Factor Tables: Table A.7Length (L) Table A.8Area (L2) Table A.9Volume (L3) Table A.10 Plane Angle (no dimensions) Table A.11 Linear Velocity (LT1) Table A.12 Linear Acceleration (LT2) Table A.13 Mass (M) and Weight Table A.14 Density or Mass per Unit Volume (ML3) Table A.15 Force (MLT2) or (F) Table A.16 Pressure or Force per Unit Area (ML1T2) or (FL2) Table A.17 Energy, Work, and Heat (ML2T2) or (FL) Table A.18 Power or Rate of Doing Work (ML2T3) or (FLT1) Table A.19 Heat Flux (Power/Area) Table A.20 Specific Heat (L2T2t1,t C temperature) Table A.21 Thermal Conductivity (LMT3t1) Appendix BThermophysical Property Data Table B.1Approximate Properties of Common Gases Table B.2Thermophysical Property Values for Gases at Standard At- mospheric Pressure Table B.3Approximate Properties of Common Liquids at Standard Atmospheric Pressure Table B.4Properties of Water Table B.5Properties of Saturated Liquids Table B.6Properties of Metals Table B.7Properties of Nonmetals Appendix CFuel Properties and Combustion Data Table C.1Physical and Combustion Properties of Selected Fuels in Air Table C.2Heats of Combustion and Related Properties of Pure Substances Table C.3Heats of Combustion and Related Properties of Plastics Table C.4Heats of Combustion of Miscellaneous Materials Appendix DConfiguration Factors Figure D-1 View Factor for Parallel, Rectangular Plates Figure D-2 View Factor for Parallel, Rectangular Radiator Figure D-3 View Factor for Rectangular Plates at Various Angles APPX-SO.QXD 11/16/2001 1:27 PM Page 1 References Cited 1. E.A. Mechtly, “The International System of Units, Physical Constants and Conversion Factors,” 2nd revision, National Aeronautics and Space Administration, Washington, DC (1973). 2. B.N. Taylor, W.H. Parker, and D.N. Langenberg, “Determi- nation of e/h, QED, and the Fundamental Constants,” Re- views of Modern Physics, 41 (1969). 3. B.D. Tapley and T.R. Poston (eds.), Eshbachs Handbook of En- gineering Fundamentals, 4th ed., John Wiley and Sons, New York (1990). 4. E.R.G. Eckert and R.M. Drake, Analysis of Heat and Mass Transfer, McGraw-Hill, New York (1972). 5. J.P. Holman, Heat Transfer, McGraw-Hill, New York (1986). 6. A.M. Kanury, Introduction to Combustion Phenomena, Gordon and Breach Science Publishers, New York (1975). 7. V. Babrauskas, “Tables and Charts,” Fire Protection Handbook, 17th ed. (A.E. Cote and J. Linville, eds.), National Fire Pro- tection Association, Quincy, MA(1991). 8. P. Blackshear (ed.), Heat Transfer in Fires, Scripta Book Com- pany, Washington, DC (1974). 9. R. Siegel and J.R. Howell, Thermal Radiation Heat Transfer, 3rd ed., Taylor it is equal to the mass of the international prototype of the kilogram. (The international prototype of the kilogram is a particular cylinder of platinum- iridium alloy that is preserved in a vault at Sèvres, France, by the International Bureau of Weights and Measures.) The secondis the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium-133 atom. The ampereis that constant current, which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed 1 meter apart in a vacuum, would produce between these conductors a force equal to 2 ? 107newton per meter of length. The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water. The candela is the luminous intensity, in the perpendicular direction, of a surface of 1/600000 square meter of a blackbody at the temperature of freezing platinum under a pressure of 101325 newtons per square meter. The moleis the amount of substance of a system that contains as many elementary entities as there are carbon atoms in 0.012 kg of carbon 12. The elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles. The newtonis that force that gives to a mass of 1 kilogram an acceleration of 1 meter per second per second. The jouleis the work done when the point of application of 1 newton is displaced a distance of 1 meter in the direction of the force. The watt is the power that gives rise to the production of energy at the rate of 1 joule per second. The volt is the difference of electric potential between two points of a conducting wire carrying a constant current of 1 ampere, when the power dissipated between these points is equal to 1 watt. The ohm is the electric resistance between two points of a conductor when a constant difference of potential of 1 volt, applied between these two points, produces in this conductor a current of 1 ampere, this conductor not being the source of any electromotive force. The coulomb is the quantity of electricity transported in 1 second by a current of 1 ampere. The farad is the capacitance of a capacitor between the plates of which there appears a difference of potential of 1 volt when it is charged by a quantity of electricity equal to 1 coulomb. The henry is the inductance of a closed circuit in which an electromotive force of 1 volt is produced when the electric current in the circuit varies uniformly at a rate of 1 ampere per second. The weber is the magnetic flux that, linking a circuit of one turn, produces in it an electromotive force of 1 volt as it is reduced to zero at a uniform rate in 1 second. The lumen is the luminous flux emitted in a solid angle of 1 steradian by a uniform point source having an intensity of 1 candela. The radian is the plane angle between two radii of a circle that cut off on the circumference an arc equal in length to the radius. The steradian is the solid angle that, having its vertex in the center of a sphere, cuts off an area of the surface of the sphere equal to that of a square with sides of length equal to the radius of the sphere. Table A.2Definitions of SI Units1 APPX.QXD 11/16/2001 1:27 PM Page 2 The names of multiples and submultiples of SI units can be formed by application of the prefixes in Table A.3. The Inter- national Organization for Standardization (ISO) recommends the following rules for the use of SI prefixes: 1. Prefix symbols are printed in roman (upright) type without spacing between the prefix symbol and the unit symbol. 2. An exponent affixed to a symbol containing a prefix indicates that the multiple or submultiple of the unit is raised to the power expressed by the exponent. Example: 1 cm3C 106m3 1 cm1C 102m1 3. Compound prefixes, formed by the juxtaposition of two or more SI prefixes, are not to be used. Example: 1 nmbut not: 1 m5m ISO has issued additional recommendations with the aim of securing uniformity in the use of units. According to these recommendations, 1. The product of two or more units is preferably indicated by a dot. The dot may be dispensed with when there is no risk of confusion with another unit symbol. Example: NÝm or Nmbut not: mN 2. Asolidus (oblique stroke, /), a horizontal line, or negative powers may be used to express a derived unit formed from two others by division. Example: m/s, m s , or mÝs1 3. The solidus must not be repeated on the same line unless ambiguity is avoided by parentheses. In complicated cases negative powers or parentheses should be used. Example: m/s2or mÝs2but not: m/s/s mÝkg/(s3ÝA) or mÝkgÝs3ÝA1 but not: mÝkg/s3/A Table A.3SI Prefixes1 Factor by Which Unit Is MultipliedPrefixSymbol 1012TeraT 109GigaG 106MegaM 103Kilok 102Hectoh 10Dekada 101Decid 102Centic 103Millim 106Micro5 109Nanon 1012Picop 1015Femtof 1018Attoa Appendix AA3 APPX.QXD 11/16/2001 1:27 PM Page 3 Table A.4 lists physical constants from the work of B. N. Taylor, W. H. Parker, and D. N. Langenberg.2Their least- squares adjustment of values of the constants depends strongly on a highly accurate (2.4 ppm) determination of e/h from the ac Josephson effect in superconductors, and is believed to be more accurate than the 1963 adjustment, which appears to suffer from the use of an incorrect value of the fine structure constant as an input datum. See also NBS Special Publica- tion 344, issued March 1971. A4Appendices Quantity Speed of light in vacuum Gravitational constant Avogadro constant Boltzmann constant Gas constant Volume of ideal gas, standard conditions Farady constant Unified atomic mass unit Planck constant Electron charge Electron rest mass Proton rest mass Neutron rest mass Electron charge to mass ratio Stefan-Boltzmann constant First radiation constant Second radiation constant Rydberg constant Fine structure constant Bohr radius Classical electron radius Compton wavelength of electron Compton wavelength of proton Compton wavelength of neutron Electron magnetic moment Proton magnetic moment Bohr magneton Nuclear magneton Gyromagnetic ratio of protons in H2O Gyromagnetic ratio of protons in H2O Corrected for diamagnetism of H2O Magnetic flux quantum Quantum of circulation Error (ppm) 0.33 460 6.6 43 42 5.5 6.6 7.6 7.6 4.4 6.0 6.2 6.6 0.08 6.6 0.10 3.1 170 7.6 43 0.10 1.5 1.5 1.5 4.6 3.1 3.1 6.8 6.8 6.8 6.8 7.0 7.0 7.0 10 3.1 3.1 3.1 3.1 3.3 3.1 3.1 Value 2. 997 925 0 6. 673 2 6. 022 169 1. 380 622 8. 314 34 2. 241 36 9. 648 670 1. 660 531 6. 626 196 1. 054 591 9 1. 602 191 7 9. 109 558 5. 485 930 1. 672 614 1. 007 276 61 1. 674 920 1. 008 665 20 1. 758 802 8 5. 669 61 3. 741 844 1. 438 833 1. 097 373 12 7. 297 351 1. 370 360 2 5. 291 771 5 2. 817 939 2. 426 309 6 3. 861 592 1. 321 440 9 2. 103 139 1. 319 621 7 2. 100 243 9. 284 851 1. 410 620 3 9. 274 096 5. 050 951 2. 675 127 0 4. 257 597 2. 675 196 5 4. 257 707 2. 067 853 8 3. 636 947 7. 273 894 Symbol c G NA k R V0 F u h h/29 e me mp mn e/me ; 29hc2 hc/k Rã * *1 a0 re 4C 4C/29 4C,p 4C,p/29 4C,n 4C,n/29 5e 5p 5B 5n ,? p ,? p/29 ,? p ,? p/29 '0 h/2me h/me Prefix ? 108 1011 1026 1023 103 101 107 1027 1034 1034 1019 1031 104 1027 1027 1011 108 1016 102 107 103 102 1011 1015 1012 1013 1015 1016 1015 1016 1024 1026 1024 1027 108 107 108 107 1015 104 104 Unit mÝs1 NÝm2Ýkg2 kmol1 JÝK1 JÝkmol1ÝK1 m3Ýkmol1 CÝkmol1 kg JÝs JÝs C kg u kg u kg u CÝkg1 WÝm2ÝK4 WÝm2 mÝK m1 m m m m m m m m JÝT1 JÝT1 JÝT1 JÝT1 radÝs1T1 HzÝT1 radÝs1T1 HzÝT1 Wb JÝsÝkg1 JÝsÝkg1 Table A.4Physical Constants2 APPX.QXD 11/16/2001 1:27 PM Page 4 Appendix AA5 Table A.4(Continued) (c2) (c2) (c2) (c2) (c2) (h1) (hc1) (k1) (hc) (hc) (hc) (c) (hc/k) kg/eV u/eV u/kg mc/eV mp/eV mn/eV eV/J eV/Hz eVm eV/K (eVm)1 Rã/J Rã/eV Rã/Hz Rã/K mp/me 5e/5B 5? p/5B 5p/5B 5? p/5n 5p/5n Value 5. 609 538 9. 314 812 1. 660 531 5. 110 041 9. 382 592 9. 395 527 1. 602 191 7 2. 417 965 9 8. 065 465 1. 160 485 1. 239 854 1 2. 179 914 1. 360 582 6 3. 289 842 3 1. 578 936 1. 836 109 1. 001 159 638 9 1. 520 993 12 1. 521 032 64 2. 792 709 2. 792 782 Error (ppm) 4.4 5.5 6.6 3.1 5.5 5.5 4.4 3.3 3.3 42 3.3 7.6 3.3 0.35 43 6.2 0.0031 0.066 0.30 6.2 6.2 Prefix 1035 108 1027 105 108 108 1019 1014 105 104 106 1018 101 1015 105 103 103 103 Other Important Constants 9 C 33.141 592 653 589 eC 2.718 281 828 459 50C 49 ? 107H/m (exact), permeability of free space C 1.256 637 061 ? 106H/m .0C 501c2F/m, permittivity of free space C 8.854 185 ? 1012F/m Unitless Numerical Ratios The following tables express the definitions of miscellaneous units of measure as exact numerical multiples of coher- ent SI units, and provide multiplying factors for converting numbers and miscellaneous units to corresponding new num- bers and SI units. The first two digits of each numerical entry represents a power of 10. An asterisk following a number expresses an ex- act definition. For example, the entry 02 2.54* expresses the fact that 1 inch C 2.54 ? 102meter, exactly, by definition. Most of the definitions are extracted from National Bureau of Standards (NBS) documents. Numbers not followed by an asterisk are only approximate representations of definitions, or are the results of physical measurements. The conversion factors are listed alphabetically in Table A.5 and by physical quantity in Table A.6. The listing by physical quantity (Table A.6) includes only relationships that are frequently encountered, and deliberately omits the great multiplicity of combinations of units that are used for more specialized purposes. Conversion factors for combinations of units are easily generated from numbers given in the alphabetical listing (Table A.5) by the technique of direct substitu- tion or by other well-known rules for manipulating units. These rules are adequately discussed in many science and en- gineering textbooks and are not repeated here. To Convert fromtoMultiply by AbampereAmpere=01 1.00* AbcoulombCoulomb=01 1.00* AbfaradFarad=09 1.00* AbhenryHenry09 1.00* AbmhoSiemens=09 1.00* AbohmOhm09 1.00* AbvoltVolt08 1.00* AcreMeter2=03 4.046 856 422 4* AngstromMeter10 1.00* Table A.5Alphabetical Listing of Conversion Factors1 APPX.QXD 11/16/2001 1:27 PM Page 5 A6Appendices AreMeter2=02 1.00* Astronomical unit (IAU)Meter=11 1.496 00 Astronomical unit (radio)Meter=11 1.495 978 9 AtmosphereNewton/meter2=05 1.013 25* BarNewton/meter2=05 1.00* BarnMeter228 1.00* Barrel (petroleum, 42 gallons)Meter301 1.589 873 BaryeNewton/meter201 1.00* Board foot (1' ? 1' ? 1“)Meter303 2.359 737 216* British thermal unit IST before 1956Joule=03 1.055 04 IST after 1956Joule=03 1.055 056 British thermal unit (mean)Joule=03 1.055 87 British thermal unit (thermochemical)Joule=03 1.054 350 British thermal unit (39ÜF)Joule=03 1.059 67 British thermal unit (60ÜF)Joule=03 1.054 68 Bushel (U.S.)Meter302 3.523 907 016 688* CableMeter=02 2.194 56* CaliberMeter04 2.54* Calorie (International Steam Table)Joule=00 4.1868 Calorie (mean)Joule=00 4.190 02 Calorie (thermochemical)Joule=00 4.184* Calorie (15ÜC)Joule=00 4.185 80 Calorie (20ÜC)Joule=00 4.181 90 Calorie (kilogram, International Steam Table)Joule=03 4.1868 Calorie (kilogram, mean)Joule=03 4.190 02 Calorie (kilogram, thermochemical)Joule=03 4.184* Carat (metric)Kilogram04 2.

    注意事项

    本文(sfpe handbook of Fire Protection Engineering:Appendices.pdf)为本站会员(小小飞)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    经营许可证编号:宁ICP备18001539号-1

    三一文库
    收起
    展开