欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 研究报告>
  • 工作总结>
  • 合同范本>
  • 心得体会>
  • 工作报告>
  • 党团相关>
  • 幼儿/小学教育>
  • 高等教育>
  • 经济/贸易/财会>
  • 建筑/环境>
  • 金融/证券>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > DOC文档下载
     

    双向拉伸BOPP薄膜生产 毕业论文.doc

    • 资源ID:3916317       资源大小:85.02KB        全文页数:13页
    • 资源格式: DOC        下载积分:4
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录   微博登录  
    二维码
    微信扫一扫登录
    下载资源需要4
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    双向拉伸BOPP薄膜生产 毕业论文.doc

    13摘要分析了BOPP薄膜生产过程中的取向和结晶对薄膜机械力学性能和光学性能的影响,实际生产中生产工艺应该根据PP的热力学特性相应调整,以制造出双向取向度高,同时结晶微细、均匀的高性能优质BOPP薄膜。 关键词 取向,结晶,BOPP薄膜 AbstractThe Orientation and Crystallization in Producing BOPP Film Wu Zengqing, Tu zhigang (Zhanjiang Packaging Material Enterprises Ltd., Guangdong, 524022) ABSTRACT:The influences of the orientation and crystallization in producing Bi-axially Oriented Polypropylene (BOPP) film on mechanic properties and optic properties are analyzed. In order to produce high-quality BOPP film with high bi-axially orientation degree and superfine uniform crystal the processes of BOPP film should be adjusted based on the thermodynamic properties of PP in the course of practical production. KEYWORDS: Orientation, Crystallization, BOPP film 目  录第一章 绪  论 .2第二章 原材料性能.3第三章BOPP薄膜的主要生产方法及工艺流程.3第四章 取向441 流动取向 42拉伸取向第五章 温度对BOPP薄膜生产的影响.651 冷辊温度的控制52 纵向拉伸温度53 横向拉伸温度第六章 结晶761结晶对生产工艺调整的影响 62结晶对BOPP性能的影响 第七章 BOPP薄膜生产中常见的问题及解决办法.871铸片常见的缺陷和解决办法72拉伸破膜的原因及解决办法第八章 结论与展望.1081 结论 82 展望 参考文献11第一章 绪  论双向拉伸聚丙烯(BOPP)薄膜具有高光泽、高挺度、阻气性好、抗冲强度高等特点,是一种性能优良的高透明包装材料1。从80年代后期开始至今,BOPP薄膜在食品、饮料、香烟、服装等行业的包装上得到广泛应用。尽管BOPP薄膜的设备和技术都依赖进口,投资规模大,但由于其市场潜力大、产品附加值高,利润大,近年来再次成为塑料包装行业的投资热点。 对于一种包装材料而言,反映外观美感的光学性能和反映使用承受强度的机械力学性能是非常重要的性能指标。聚丙烯(PP)是一种结晶性聚合物,在BOPP薄膜的加工过程中,PP在力、热和电场等的作用下,经历了复杂的取向和结晶的变化,PP聚集态结构中的取向和结晶将对BOPP薄膜光学性能、力学性能起决定性影响,因此如何通过工艺的调整,控制BOPP薄膜生产过程中的取向和结晶是改善产品品质、提高产品等级的关键。第二章 原材料性能 工业化生产BOPP薄膜用主料的主要成分是PP。PP是一种典型的立体规整性聚合物,根据烃基在分子平面两侧的分布,可分为等规PP、间规PP和无规PP。等规PP和间规PP具有不同的结晶结构,等规PP是以均相成核的三维生长方式进行结晶,而间规PP主要以均相成核的二维方式进行结晶,形成了外观尺寸不规则的小晶片,而且由于间规PP分子结构的规整度较低,使得间规PP具有较低的结晶速率和结晶度。研究表明,等规度越大,结晶速率越快,薄膜产品的屈服强度和表面硬度会明显增大,而无规PP在聚合物中起内部润滑剂的作用,并有利于聚合物定向,有助于改善薄膜的光学性能。 目前,BOPP薄膜品种繁多,性能也差异很大,造成这种情况的主要原因是使用的原料和生产工艺不同。实践证明,只有等规PP的质量分数为95%97%,无规PP的质量分数为3%5%的PP才适合生产BOPP薄膜,并且一般选用熔体流动速率为24g/10min的PP。另外,通过在PP薄膜的表面上共挤出一层或多层熔点较低的共聚物,可以扩大BOPP薄膜在包装工业中的应用范围。 第三章BOPP薄膜的主要生产方法及工艺流程目前BOPP薄膜的生产方法主要有管膜法和平膜法。管膜法属双向一步拉伸法;平膜法又分为双向一步拉伸和双向两步拉伸两种方法。管膜法具有设备简单、投资少、占地小、无边料损失、操作简单等优点,但由于存在生产效率低、产品厚度公差大等缺点,自20世纪80年代以来几乎没有发展,目前仅用于生产BOPP热收缩膜等特殊品种。双向一步拉伸法制得的产品纵横向性能均衡,拉伸过程中几乎不破膜,但因设备复杂、制造困难、价格昂贵、边料损失多、难于高速化、产品厚度受限制等问题,目前尚未得到大规模采用。而双向两步拉伸法设备成熟、生产效率高、适于大批量生产,被绝大多数企业所采用。以逐次双向拉伸工艺为例,其工艺流程如下。 图2.1总体上,逐次拉伸法是将挤出的PP片材先经过纵向拉伸、后横向拉伸来完成二次取向过程。生产过程中主要控制的工艺参数有生产线速度、温度、拉伸比等。 BOPP薄膜质量控制指标包括弹性模量,纵、横向的抗张强度、断裂伸长率、热收缩率,摩擦系数,浊度,光泽度等,这些指标主要体现薄膜的力学性能和光学性能,它们与PP高分子链的聚集状态如取向、结晶等有密不可分的联系。 第四章 取向 由于聚合物分子具有长链的结构特点,聚合物成型加工过程中,在外力场的作用下,高分子链、链段或微晶会沿着外力方向有序排列,产生不同程度的取向,形成一种新的聚集态结构-取向态结构,致使材料在不同方向上的机械力学、光学和热力学性能发生显著变化。 BOPP薄膜生产中的取向主要包括流动取向和拉伸取向。 41 流动取向 流动取向发生在挤出口模中,BOPP薄膜生产通常使用衣架型模头,PP熔体在口模中成型段的流动近似为狭缝流道中的流动,在靠近流道壁面处熔体流动速度梯度大,特别是模唇处温度较低,在拉伸力、剪切应力的作用下,高分子链沿流动方向伸展取向;熔体挤出时,由于温度很高,分子热运动剧烈,也存在强烈解取向作用。因此流动取向对BOPP薄膜性能的影响相对较小。 42拉伸取向 4.2.1 纵向拉伸和横向拉伸过程BOPP薄膜生产过程中的取向主要发生纵向拉伸和横向拉伸过程,在经过纵向拉伸后,高分子链单轴纵向取向,大大提高了片材的纵向机械性能,而横向性能恶化;进一步横拉之后,高分子链呈双轴取向状态如图2所示,因此可以综合改善BOPP薄膜的性能,并且随分子链取向度提高,薄膜中伸直链段数目增多,折叠链段数目减少,晶片之间的连接链段增加,材料的密度和强度都相应提高,而伸长率降低4。但在横拉伸预热及横拉伸时,由于温度升高,分子链松弛时间缩短,利于解取向,加上横向拉伸力的作用,会在一定程度上损害分子链的纵向取向度,导致薄膜的纵向热收缩率减小。 图3.14.2.2纵、横向拉伸比拉伸比是一个很重要的工艺参数,无论是纵向拉伸比,还是横向拉伸比,对BOPP薄膜的物理、力学性能都有重大的影响。在一定的温度下,拉伸比愈大,PP分子链的取向度愈大。即薄膜的力学强度提高、模量增大、断裂伸长率减小,冲击强度、耐折性增大,透气、光泽性变好。BOPP薄膜生产过程中的取向主要发生在纵向拉伸和横向拉伸过程中,在经过纵向拉伸后,高分子链呈单轴纵向取向,大大提高了铸片的纵向力学性能,而横向性能劣化。进一步横向拉伸后,高分子链呈双轴取向状态。随着分子链取向度的提高,薄膜中伸直链段数目增多,折叠链段数目相应减少,晶片之间的连接链段逐渐增加,材料的密度和强度都相应提高,而断裂伸长率降低。因此双向拉伸可以综合改善PP薄膜的性能。 纵向拉伸比和横向拉伸比的差异最终决定BOPP薄膜纵、横向的物理、力学性能差异。如果纵向拉伸比和横向拉伸比相差不大,两个方向上的分子取向就没有明显的差异,BOPP薄膜表现出各向同性。为了生产纵向性能高于横向性能的BOPP薄膜,纵、横拉伸比的选择相当重要,一般情况下,纵向拉伸比(4.55.5)小于横向拉伸比(7.59.0)。BOPP薄膜的横向拉伸是一个重要且复杂的过程,整个过程在一个连续的热环境中进行。横向拉伸过程具有多拉伸起始点,这主要是由横向上的某些薄弱点、较高的横向拉伸速率,以及薄膜中杂质、气泡和外观缺陷等因素造成的。多拉伸起始点易引起产品厚度不均匀。同时在横向拉伸时,有“阶梯拉伸”和“固有拉伸倍数”的问题。即在横向拉伸过程中,在薄膜的横向有若干个突然被拉伸到最大倍数的“阶梯”点。随着拉伸过程的进行,“阶梯”逐渐向两侧扩展,直至在整个幅面上全部被拉伸。在BOPP薄膜生产中,拉伸程度必须达到“固有拉伸倍数”,即薄膜的纵向拉伸比和横向拉伸比的乘积必须达到40左右。如果纵向拉伸比不足,拉伸后薄膜横向出现许多“斑马纹”或厚条道;如果横向拉伸比不足,两个边部就会出现厚条道。为了制得理想的强化薄膜,拉伸取向过程中,温度、拉伸比、拉伸速度等工艺参数的控制非常重要。BOPP双向拉伸通常在玻璃化转变温度Tg至熔融温度Tm之间进行,如纵向拉伸温度一般为80-110,横向拉伸温度为120-150,在给定的拉伸比和拉伸速度下,适当降低拉伸温度,分子伸展形变会增大,粘性变形就会减小,有助于提高取向度;但过低的温度会降低了分子链段的活动能力,不利于取向;在热拉伸取向的同时,也存在着解取向的趋势,因此拉伸之后应迅速降低温度,以保持高分子链的定向程度。一般来说,在正常的生产温度下,取向程度随拉伸比的增大而增加,而随拉伸速度的增加,拉伸应力作用的时间缩短,从而影响取向的效果。 第五章 温度对BOPP薄膜生产的影响对不同拉伸速度下,BOPP料的结晶行为及结晶结构进行了研究,以DSC方法测试了试样的结晶度、熔点等,以WAXD测定了试样的结晶结构等.结果表明:BOPP料在不同的拉伸速度(50、60、70、80、90 、100、110、120、130、140、150mm/min)下,表现出不同的应力应变行为:在较低的拉伸速度下,试样出现应变软化和冷拉现象,冷拉完成后有部分试样出现了应变硬化,但不明显;在高速拉伸时,试样均为脆性断裂,断裂应变很小;显著的区别于BOPP薄膜的应力应变行为.DSC方法获得的结晶度表明,四种原料,等规度大的,结晶能力强,结晶度也大,相应的屈服应力也大,说明其屈服强度可能主要受结晶度所控制;随着拉伸速度的提高,T36F、PD382和FS3011的结晶度都表现出了一定程度的上升,相应的屈服应力也随之有所上升,但上升的幅度不大,这似乎表明,拉伸过程有助于分子链段排入晶格,使结晶度上升,但究竟是取向还是取向促进的结晶对力学性能的作用大,有待于进一步深入研究.WAXD图谱表明,在某些拉伸速度下的部分试样出现了晶的特征峰(300)峰,这似乎说明拉伸过程中还伴随着晶型的转变.温度对BOPP薄膜生产的影响:BOPP薄膜用途很广泛,但是在BOPP薄膜的生产过程中,温度是一个很重要的生产工艺参数。良好的控制温度,是生产出高质量薄膜的基本保证。生产过程中各个加工段的温度控制有其不同的方式和特点。下面分别从冷辊温度,纵、横向拉伸温度的控制,谈谈温度对BOPP薄膜生产的影响。51 冷辊温度的控制聚合物离开机头之后,借助附片装置的外力作用,迅速贴在低温、高光洁的冷却转辊面上,高温熔体和冷辊表面进行热交换,使熔体快速冷却。对于基层主料的结晶聚合物,铸片的关键在于控制片材的结晶度。结晶度过高会引起拉伸时破膜或者拉伸薄膜雾度增大或薄膜表面粗糙度增大。但结晶度太低也会导致薄膜机械性能下降,刚度变差。一般来说,等规度较高的均聚PP这种结晶型高聚物的片材的结晶情况,与冷却的速度有密切的关系。冷辊表面温度越低,热传导越快,或者片材贴附辊面越紧,熔体冷却速度越快,此时,片材结晶度小,有利于拉伸。但是温度太低也会使挤出片材在冷辊表面出现滑动或者翘曲,所以在辊面温度较低的情况下做适当的提高,还有利于挤出片材贴附表面,对于排除气体,防止气泡、波纹等表面缺陷有一定做用。冷辊温度的调整是需要考虑多方面的因素,比如原料种类、附片设备、片材厚度等等。总体来说,在生产BOPP薄膜时,在一定范围内,冷辊温度增加,拉伸强度下降,雾度增加。所以在较低温度下冷却,使片材结晶度小,对以后的拉伸有利。5.2 纵向拉伸温度在纵拉区,片材在纵向拉伸辊的作用下被纵向拉伸,聚合物分子链段沿纵向取向。同样,在纵拉过程中,很好的控制高聚物的结晶是很重要的。在结晶聚合物在受应力的作用下会加速结晶,这是因为应力使聚合物取向并产生诱发成核作用,此时,大分子沿受力方向拉伸并形成有序区域,成为初级晶核,从而使结晶诱导的时间大大缩短,结晶速度增快。另外,温度也是影响结晶度的一个重要因素。结晶聚合物结晶速度最快的某个温度,就是最大结晶温度(Tmax)。一般来说,结晶聚合物的最大结晶温度(Tmax)和熔点温度(Tm)存在以下关系:Tmax (0.800.85 )Tm,也就是说,晶体生长最大速率大约在熔点温度的0 .80.85倍处。聚合物在Tmax范围,结晶速度快,结晶度急剧增加。高聚物结晶度高,在拉伸过时容易破膜,所以在拉伸过程中要尽量降低高聚物的结晶速度,控制较低的结晶度,保证拉伸的顺利进行。由于取向所造成的聚合物结晶速度加快是不可避免的,但是可以通过避免在Tmax范围拉伸可以有效的降低结晶速度。另外,经实践证明:采用较低的预热、拉伸温度及拉伸立即冷却都对于提高薄膜取向,增强薄膜的力学性能,减小结晶度的有利。在温度过高的情况下会使聚合物形成球晶,这使薄膜的透明性下降, 对于有热封层的薄膜来说,拉伸的温度选择尤为重要,一般的热封层其Tm在135左右,所以纵拉温度过高还会引起热封层粘辊。5.3 横向拉伸温度横向拉伸各区温度是影响薄膜机械强度、成膜性、厚度均匀等性能的关键因素,通常在范围内控制较低的温度进行拉伸有利于提高薄膜的机械强度,有利于增大薄膜的热收缩性。而温度过高会因起厚度公差大,薄膜雾度大,严重时引起破膜。当然,温度过低也会引起破膜、脱夹等问题。拉伸温度主要取决于拉伸加工的条件(拉伸比、拉伸速率),产品厚度和被拉伸的材料。拉伸速度越快,薄膜在各区加热时间就越短,拉伸温度就相应需要提高;薄膜厚度越大,温度也越高。由于片材在拉伸之前已经经历了纵向拉伸,分子在纵向得到了取向,所以在横向拉伸区的温度应该比纵向拉伸区高1525左右。另外,横向拉伸区整个温度的分布也是很重要的,各区温度要稳定、均匀。虽然聚合物在拉伸时会产生热量,但在伸长过程中,粘度也会增大,要实现连续拉伸,一般横向拉伸区的温度是递增的。总体来说:影响横向拉伸区的温度很多,包括材料的牌号,薄膜厚度,加工条件等等因素。但一般来说,在横向拉伸过程中,较高的拉伸温度使薄膜的机械性能有所下降,热收缩率随着温度的增加也急剧缩小。而在热定型段,对于薄膜的光学性能影响较大,温度过高使薄膜的光泽度下降和雾度增加。从以上分析得出:薄膜技术的重要性,在进行BOPP薄膜的生产过程中,为了提高成膜性能,良好的控制温度是很关键的。用骤冷铸片,控制结晶的生长;在拉伸过程中控制温度避开在Tmax范围内进行拉伸,保证结晶速度较慢,以利于分子链段的取向;纵、横拉伸过程中,在允许的温度范围内采用较低的温度进行拉伸,是提高薄膜机械性能,改善薄膜光学性能,增加薄膜的收缩率的一个条件。第六章 结晶 晶态结构是高聚物中三维有序的最规整的聚集态结构,结晶是BOPP生产加工过程中不可回避的问题,PP结晶的速度、结晶的完善程度、结晶的形态、晶体的大小等对生产工艺、薄膜性能都有非常重要的影响。 61结晶对生产工艺调整的影响 均聚PP有、和拟六方共五种晶系,其中晶系属单斜晶系,是最常见、最稳定的结晶。PP结晶贯穿着从熔体挤出到时效处理等BOPP生产的整个过程。为了提高成膜性,PP挤出时采用骤冷铸片,以控制结晶的生成,降低结晶度;在双向拉伸时要求结晶速度较慢,以利于拉伸取向,较早、较快的结晶和较大的结晶颗粒都有可能导致破膜6;在横拉后热处理定型阶段,为了提高刚性和强度,要求产生并加速结晶。 PP的最大结晶速率的温度大约为0.85Tm(也可以根据DSC测定的结果确定),温度越高或越低如在Tm或Tg附近,越难结晶,在拉伸过程中要防止预热、拉伸时结晶度急剧增加,因此不要在PP最大结晶速度的温度区域内选择拉伸温度,最好在结晶开始熔融、分子链能够运动的温度下进行拉伸,即最大结晶速度的温度到熔点之间。实际生产时应根据PP的热力学特性来相应地调整生产工艺。 62结晶对BOPP性能的影响 薄膜中PP的结晶度和晶体尺寸对BOPP薄膜的机械力学性能和光学性能有重要影响。结晶度高则强度高,韧性差;晶体尺寸小而均匀,有利于提高薄膜的力学强度,耐磨性、耐热性,提高薄膜的透明度和表面光泽度。 双向拉伸过程中的结晶有着高聚物聚集态结构特殊性的一面,存在取向与结晶互生现象,即取向导致结晶,结晶中有取向。拉伸取向引起晶片倾斜、滑移延展,原有的晶片被拉伸细化,重排为取向态,形成取向的折叠链晶片、伸直链晶或球晶转变为微纤晶状结构等。因此薄膜的综合性能进一步得到强化。 如研究表明,拉伸取向导致分子链规则排列,产生均相晶核,诱导拉伸结晶,形成串晶互锁结构,可以大大提高取向方向PP的力学性能7;双向拉伸也可以使PP中可能产生的较大颗粒晶体破碎,从而减小晶体尺寸,提高透光率,降低雾度。如PP经双向拉伸后,雾度下降50%8。双向拉伸塑料薄膜是在低于薄膜材料熔点、高于玻璃化转变温度(Tg)时,对厚膜或铸片进行纵向和横向拉伸,然后在张紧状态下进行适当冷却或热定型处理或特殊的加工(如电晕、涂覆等)而制得的制品。双向拉伸聚丙烯(BOPP)薄膜就是用这种方法制得的。 从结晶的角度来看,要生产高质量的BOPP薄膜,应尽量减小PP晶体的尺寸,一般可以从两个方面考虑,其一,工艺调整,如各段的冷却速度、温度、拉伸比、拉伸速度等;其二是配方,如主料PP的选择、成核剂的使用等。 第七章 BOPP薄膜生产中常见的问题及解决办法在生产BOPP薄膜过程中所要实现的主要目标首先是在尽可能高速的前提下实现连续生产,其次是提高BOPP薄膜的性能,保证质量,再次是降低能耗。然而,在实际生产过程中,由于多方面的原因,BOPP薄膜出现各种各样的问题,使生产目标难以实现。笔者针对生产中常见的问题,结合引进的法国DMT公司的8.2mBOPP薄膜生产线提出解决的办法。7.1铸片常见的缺陷和解决办法7.1.1横向条纹 (1)大间距横向条纹其产生原因主要有挤出熔体压力不稳、急冷辊转速或温度不均、风刀风量波动过大3点。其中第1点比较常见。造成压力不稳的因素有很多,最主要的一方面是生产线线速度提速过快,造成计量泵转速迅速提高,而另一方面主挤出机螺杆转速提高相对较慢,造成模头吐料不足,压力不稳9。遇到此类情况,最好适当延长提速时间,待线速度稳定后,横向条纹自然消失。还有一种比较常见的情况,就是原料因素。在各项工艺条件控制较好,经多次调整无明显改善时,就要考虑更换原料2。 (2)小间距横向条纹小间距横向条纹在实际生产过程中并不常见,产生原因有4点:机头的角度不适宜、风刀角度或风量不适宜、机头附近气流影响、急冷辊转速不稳。可从这4个方面加以解决。7.1.2纵向条纹在铸片过程中,有时会看到挤出铸片局部、固定位置处有连续纵向条纹。如果用这种铸片来生产BOPP薄膜,将导致薄膜横向厚度不均匀;收卷、分切薄膜外观出现明显的突起(暴筋)或纵向条纹。消除纵向条纹通常采取的措施有:选用结构合理、质量好的模头,保证唇口光洁,不得有任何机械损伤。加强熔体过滤。及时清除唇口上的杂物,做好机头维护工作。提高气刀吹风的均匀性。合理控制挤出各段温度。调整好机头相对急冷辊的位置。7.1.3两边翘曲该现象主要是由附片效果不好、铸片过程中两面温差过大造成的。铸片翘曲将影响薄膜的平整性,就PP来说,由于铸片冷却不均匀,结晶不均匀,直接影响薄膜的成膜性。铸片边缘通常向温度较低的一面翘曲,因此在生产过程中可根据铸片的翘曲情况判断急冷辊面与水槽中冷却水温度的高低,进而考虑解决办法。7.1.4出现气泡如果熔体中夹带杂质,原料含水率过高,挤出温度过高,物料加热时间过长或者挤出机、过滤器中积存空气或降解物等情况时,铸片中就可能出现气泡。在正常生产过程中如果出现气泡,要仔细观察气泡形状、颜色等,分析产生原因并加以解决。如果空螺杆开机挤出或更换新的熔体过滤器再次开机时,挤出机或过滤器中可能存有空气或降解物,此时铸片中一般会出现气泡。这种问题一般通过充分排料就可以解决。7.1.5边缘不整齐铸片边缘不整齐可能是由于模唇两端密封件损坏造成边部漏料,也可能是压边系统不正常,或者是挤出熔体压力不稳。查明原因后要及时使用相应的方法解决,否则容易造成横拉脱夹。7.1.6其它缺陷在铸片过程中可能还会出现铸片内含有晶点、焦料、未熔料、结晶度不适宜、光泽度不良及出现鲨鱼皮现象等缺陷。这些缺陷在工艺较成熟、技术水平较高的生产线上一般不会出现。7.2拉伸破膜的原因及解决办法在生产过程中,物料从铸片到收卷,整个过程中都有可能破膜。通常,根据破膜位置把破膜分为横拉前破膜、横拉破膜、横拉后破膜。7.2.1横拉前破膜在铸片或纵拉过程中生产条件发生了明显变化、薄膜纵向厚度变化很大或铸片出现很大缺陷时,使得铸片在拉伸过程中局部拉伸应力超过了材料的允许承受应力,导致横向破膜。不过横拉前破膜在正常生产过程中很少见。7.2.2横拉破膜横拉破膜在生产过程中最为常见。薄膜被高速横向拉伸时最容易破裂。一般把横拉破膜分为横向破膜、纵向破膜和脱夹破膜3种类型。(1)横向破膜横向破膜原因很多,具体可分为:原料中含有性能差异较大的杂质(低分子物、油污等)。铸片上有明显的横向条纹、气泡。各种不明显的横拉前破膜因素进一步扩大(纵向厚度波动等),使局部区域应变过大。铸片的结晶、取向状况偏差过大。过滤器损坏,片铸片杂质含量高。机头漏料。辊面压伤。废料、设备划伤薄膜。挤出、纵向拉伸温度设定不当。烘箱顶部及风管上聚集的各种挥发物落到薄膜上。另外,链夹损坏也是其中一个重要原因。 (2)纵向破膜如果出现纵向破膜,可以从以下几个方面分析:薄膜横向厚度偏差过大。纵、横向拉伸比过大。纵向拉伸时边缘温度过高。纵向拉伸定型温度过高,铸片结晶取向不好。链夹温度过高横拉烘箱内有废料划伤薄膜。 (3)脱夹破膜脱夹主要从膜片、夹具和工艺3方面分析:如果铸片边缘不好或者厚度偏差大,就容易造成脱夹。此时要及时调整铸片工艺,把铸片的缺陷消除。如果在正常生产中出现脱夹,经人工复位后仍然脱夹,此时就要考虑设备原因,可能是有链夹损坏无法闭合,也可能是有废膜挂在链夹上,或者可能是入口导边器失灵。出现此种情况,要立即停机,并认真检查。薄膜横向拉伸时预热、拉伸温度过低,入口张力不适宜等也会造成脱夹。7.2.3横拉后破膜(牵引、收卷破膜)横拉后破膜主要是由于设备故障或操作不当造成的。主要可以归纳为:牵引、收卷张力过大。电晕电极与电晕辊间距过小,擦伤薄膜。切边切刀不锋利,造成薄膜边缘不整。吸边不及时。薄膜包辊。飞刀不合适,无法正常换卷等。7.2.4预防破膜的基本原则 (1)严格按照要求及规定选择使用原料。 (2)定期检修设备,确保设备处于正常工作状态。 (3)制定合理的生产工艺。 (4)提高工作人员的技术水平及责任心。 (5)及时找出破膜原因,并制定合理的解决方案。第八章 结论与展望8.1 结论BOPP薄膜是包装领域的重要产品,具有质轻、透明、无毒、防潮、透气性低、力学强度高等优点,被广泛用于食品、医药、日用轻工、香烟等产品的包装,并大量用作复合膜的基材,有“包装皇后”的美称。双向拉伸法是一种技术要求十分高的塑料成型加工方法,除需要具备性能良好的加工设备外,更重要的是要求生产人员能够深入掌握PP的性能及加工条件对产品性能的影响,及时解决生产中存在的问题。8.2展望在PP高性能工程化和透明改性方面,如何使PP结晶微细化、均质化也是重要改性途径之一。 参考文献 1 朱新远,我国BOPP薄膜现状及专用料的开发,广州化工,2000,28(1):28 2 中国包装技术协会塑料包装委员会第六届委员会年会暨塑料包装新技术研讨会论文集2002年3月,苏州 3 尹燕平,双向拉伸塑料薄膜,北京:化学工业出版社,1999 4 金日光,华幼卿,高分子物理,北京:化学工业出版社,1991 5 吴耀根,郑少华,王云等,专利,CN1169911A 6 汤明,王亚辉,秦学军,BOPP专用料结构表征及性能研究,塑料加工应用,1999,(2):1 7 申开智,胡文江,向子上等,聚丙烯在单向拉伸力场中形成双向自增强片材及其结构与性能的研究,高分子材料科学与工程,2002,18(1):145 8 李军,王文广,高雯,塑料透明改性,塑料科技,1999,129(1):21

    注意事项

    本文(双向拉伸BOPP薄膜生产 毕业论文.doc)为本站会员(小小飞)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    经营许可证编号:宁ICP备18001539号-1

    三一文库
    收起
    展开