欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 研究报告>
  • 工作总结>
  • 合同范本>
  • 心得体会>
  • 工作报告>
  • 党团相关>
  • 幼儿/小学教育>
  • 高等教育>
  • 经济/贸易/财会>
  • 建筑/环境>
  • 金融/证券>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > DOC文档下载
     

    骨架密实型二灰碎石基层修筑技术研究论文.doc

    • 资源ID:3976794       资源大小:1.22MB        全文页数:25页
    • 资源格式: DOC        下载积分:6
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录   微博登录  
    二维码
    微信扫一扫登录
    下载资源需要6
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    骨架密实型二灰碎石基层修筑技术研究论文.doc

    骨架密实型二灰碎石基层修筑技术研究摘要:采用无侧限抗压强度实验、干缩温缩实验、水稳定性实验以及抗冲涮实验,系统地研究了骨架密实型二灰稳定碎石的路用性能。骨架密实型二灰稳定碎石具有优良的力学性质,干温缩性能,水稳定性以及抗冲刷性。通过试验路三年的验证,也说明了骨架密实型二灰稳定碎石比现行规范规定的级配具有良好的路用性。关键词:骨架密实型;二灰碎石基层;修筑;路用性能一 、问题的提出随着国民经济的高速发展,作为经济发展的基础建设项目,高等级公路的建设也有了飞速的发展,特别是近几年取得了可喜的成绩。截止1999年底,我国高速公路通车总里程达到1万公里,而这些公路均为半刚性基层路面。与此同时,也有一些公路在运行的早期由于路面的设计、施工等不尽合理,造成了路面的早期破损。路面的早期破损虽然与面层类型、荷载大小、雨水等有关,但它与路面的主要承重层基层也有很大关系。据调查,相当部分的路面破坏均缘于基层,因此要提高高等级公路的路面修筑质量,首先要解决好基层的问题。在我国常用的半刚性基层主要有:水泥稳定粒料类、石灰稳定粒料类和石灰粉煤灰稳定粒料类。这些基层具有强度高、耐久性好、造价低等许多优点,因而它的出现受到工程界的普遍欢迎。二灰碎石基层由于其具有较高的后期强度、板体性能,比其它混合料具有更好的抗裂性能和抗冻性能,在高等级公路的修筑中得到了越来越普遍的使用。尽管如此,也并非所有采用二灰碎石基层修筑的路面都获得了预期的效果。采用现行施工规范的二灰碎石结构层所暴露出来的粒料偏细、收缩性大、反射裂缝严重等问题也日益突出。究其原因主要为二灰碎石混合料的配合比不当,碎石骨料级配不合理。现行公路路面基层施工技术规范中对二灰集料类混合料应用于高等级公路的唯一指标是:混合料7天、浸水抗压强度不应小于0.5MPa。就其作为基层的受力特性来说是必要的,而且是必须的,但设计时仅仅只考虑强度要求,有时甚至是单纯的追求强度,而忽视诸如抗温缩及干缩性能方面的要求,在温度条件变化、干燥失水以及行车荷载等外部因素的单独或综合作用下,势必造成混合料的温缩、干缩裂缝和混合料的松散,从而破坏了二灰碎石的板体性能,大大降低了其承重能力。有时裂缝反射到路面面层,形成反射裂缝,加剧了路面破坏。因此二灰碎石混合料的设计应在满足行车荷载对其强度要求的前提下,尽量减少其缩裂,达到充分发挥二灰碎石板体性能的目的,而二灰碎石混合料的强度、温缩、干缩以及抗冲刷性能与混合料的配合比、骨料的级配组成、气候变化,施工条件等均有直接关系,其中混合料的配合比是其最主要的内在因素。随着重型振动压路机在道路施工中的应用,哈尔滨建筑工业大学王哲人教授提出了二灰碎石混合料的紧密骨架结构模型。他认为以前的二灰碎石结构模型概括为“松排骨架,紧密填充”,而当时基层施工都是采用静态碾压,在室内一律采用击实或加压成型。因而在二灰碎石中集料的用量,在一实方混合料中最多为一松方,压实后的混合料,集料刚刚靠扰而不密实,剩余空隙才有可能全为结合料所填充,使结合料的胶结和骨架作用共同发挥,然而这种二灰碎石在实践中的使用并未取得令人满意的效果,它虽然解决了半刚性基层稳定性的问题,但其往往伴随着压密性差、早期强度低、耐疲劳性能差。实际使用中,尤其在北方,容易造成路面基层低温缩裂、路面面层反射裂缝,进而使路面破坏。由于目前在基层施工过程中普遍采用重型振动压路机,因而二灰碎石的组成符合紧密嵌挤骨架密实结构,突破松排骨架中集料的用量极限,减少收缩系数以提高混合料的耐裂性,再以具有振动状态下最大干密度的结合料来填充集料间的空隙,以最少量的填隙获得最大的填隙率,得到混合料的最大密实度,从而达到混合料最好的力学性能,提高半刚性基层各方面的性能指标。以上列出的各种组成结构观点代表了二灰碎石从出现到逐渐走向成熟生产工艺的发展过程,也说明了在使用过程中,人们对二灰碎石的组成结构和性能的认识在不断地深入。并且随着路面结构要求的提高和生产工艺的改进,二灰碎石的路面结构使用性能也得到了改善。最初只是用于轻交通量的石灰粉煤灰混合料,接着是在二灰中加入一些粗颗粒的集料形成悬浮的二灰碎石,然后随着使用要求的提高,对集料进一步提出要求,有一定级配的颗粒粒径较小的集料取代了原先单粒径粗颗粒集料,形成骨架型的二灰碎石。目前由于大吨位振动压路机的使用,使得集料颗粒在二灰碎石混合料中从以前的松散排列向紧密骨架结构过渡。二、骨架密实结构骨架密实结构应用广泛,骨架密实结构最合理,其密实性、强度和稳定性都较好,是一种较理想的结构类型。通俗的来说,骨架密实结构就是石子紧密堆积,而沙刚好填满石子空隙的状态。例如:沥青混合料按照其矿料级配组成特点,可形成“密实-悬浮”结构、“针架-空隙”和“密实骨架”结构,分别具有不同强度特征和稳定性。其中悬浮密实型是按照最佳级配原理设计的,密度和强度都较好,但稳定性较差,一般用于沥青砼中。针架空隙型主要以石料的嵌挤和内摩擦阻力形成骨架,属于连续型开级配。热稳定性好、但是沥青与矿料的粘结力差,空隙大,耐久性差。骨架密实型综合了两种的性能,是比较理想的结构类型。沥青混合料组成设计包括选择原材料和配合比设计,沥青混合料组成材料质量规格应满足设计要求,并且根据道路等级、交通特性、气候条件、施工方法等因素进行选择。我国现行热拌沥青的配合比设计方法主要包括:矿质混合料配合比设计和最佳沥青用量的确定。沥青用量采用马歇尔试验方法确定,所设计的沥青混合料还应满足水稳性和抗车辙与抗低温开裂能力的要求。SMA叫沥青码蹄脂碎石,是一种间断级配的沥青混合料。即各档料的用量不是连续的,其特点是粗料多,细料少,用油量高,矿粉多,有时会在混合料内添加纤维以增强其骨架加筋效果,其混合料属于骨架密实型结构,表面的构造深度较好,路面抗滑性能较AC(沥青混凝土)、SUP(全称Superpave,也是一种连续级配,与AC级配比较类似,混合料也属于悬浮密实型,只是在其级配设计时,有一个禁区,级配曲线是不允许通过的,实验室级配设计时与AC、SMA的设计成型方式不一样,它采用旋转压实,用的是体积设计法。这类级配设计源自美国的AASHTO的SHRP计划研究成果,因为其设计成本较高,目前在我国应用很少,尚处于引用与研究阶段)好。具有较好的高温稳定性、低温抗裂性、水稳定和抗滑性。在SMA混合料中,矿料级配组成应保证集料颗粒能形成石一石骨架结构。沥青玛蹄脂应能密实的填充集料骨架结构的空隙。实验室级配设计时采用马歇尔击实成型。此类设计源自德国。成本较高,这种混合料疲劳性能、高温性能都较好。再如配置混凝土时为什么要选用合理砂率(最优砂率)?合理的砂率才能得到合适的混凝土结构。根据集料的级配和粗细集料的不同,混凝土有三种结构形式:悬浮密实结构、骨架空隙结构、骨架密实结构。三、二灰碎石石灰、粉煤灰稳定碎石结构简称“二灰碎石”。它是通过无机结合料石灰、粉煤灰胶结碎石产生强度的一种半刚性结构。二灰碎石基层的压实度是极为重要的质量检测指标。二灰碎石混合料属于固结(胶结)密实稳定结构。其成型强度主要依赖于二灰,特别是石灰的质量和数量所提供的固结作用,而体积稳定性则主要由结构状态密实程度和空隙率大小决定。现行公路路面基层施工技术规范JTJ0342000修订说明中,有关此类混合料组成设计原理的论述,虽较JTJ03493有所改进,但涉及其结构状态方面,仍然认定当二灰与粒料之比在15852080时,混合料就是骨架密实式结构。若按原规范推荐的A、B两类级配组成范围,能够形成集料骨架的475mm以上颗粒重量,百分比仅为:A类为3248至4551;B类为3248至525525(公式为475mm筛余量(8085)。当级配最大粒径为30mm,粗集料含量低于55时,我们认为它应是悬浮密实结构,而形不成集料骨架。由于骨架密实式和悬浮密实两种结构的击实或压实密度形成机理和效果有些不同,其要求也有所区别:前者应使主骨料能相互接触而又不过分嵌挤,骨架间隙尽量填实;后者重在总体密实,减小空隙率,相对于骨架密实式而言压实较难,但较易控制,得到的结构密度可能稍高。之所以出现密度标准和评定结果方面的困惑,与这些认识差距可能有较大的关系,需要加以探讨。四、骨架密实型二灰稳定碎石基层路用性能 二灰碎石作为替代传统筑路材料的新材料,同时也解决了环境问题。早在20世纪50年代中期,已在欧美国家呈稳定增长的趋势。20世纪70年代前半期,它的使用已非常普遍,并且用量非常大。国外于20世纪6070年代对二灰碎石材料作过大量的研究工作,制定了相应的使用规范,总结了成熟的施工经验,经历了大量实际路面及机场工程的实践。在中国从20世纪6070年代以来,二灰碎石的应用得到了大力推广,已经成为目前路面工程中使用最广泛的两种半刚性基层材料之一。随着人们对二灰碎石认识的深入,以及施工工艺的不断改进,二灰碎石的组成结构和性能也发生了相应的变。在二灰碎石生产中普遍采用颗粒较粗的低品质粉煤灰和三级消石灰,配合比为1:21:4。就目前来看,在这方面变化一直不大,意见比较趋于统一。而变化及争论较多的是集料的粒径、级配、以及在混合料中的含量和结构型式。 最初,上海市由于土源缺乏,就地取材进行了工业废渣的应用研究。开始是什么工业废渣都用,如水淬渣、道渣、煤渣、矿渣、电石渣等等、并都取得了相应的效果。后来经技术上、经济上的比较,优选了三渣,即道渣(碎石)、煤渣(粉煤灰)、电石渣(石灰)作为基层,即现称的二灰碎石,俗称三渣。当时的二灰碎石以单粒径道渣为主骨料,以二灰作粘结料填充。初期施工时是以松方体积比1:2:3控制。如按同的松方密度换算,道渣约占2/3,即67%左右。以后改为质量比,简称为两个3:7,即石灰:粉煤灰=3 : 7,二灰:集料=3 : 7。所以,这样组成的二灰碎石在理论上属嵌挤填充范畴。但过去的单粒径为主的三渣,压实后平整度差,因而从有利于摊铺与压实考虑,最大粒径应予以降低。1.力学性能在路面结构中,特别是沥青路面中,基层要承受交通荷载的反复作用,因而基层应具有足够的强度和刚度,以使得其在设计使用年限内不会产生过大的残余变形,不产生剪切和疲劳破坏。在目前的基层施工技术规范中,对于二灰碎石只采用抗压强度指标进行质量控制,而无其它指标。二灰碎石的抗压强度是路面结构分析中一个重要参数,不但要了解其早期的强度,还需要了解其发展规律,掌握其潜能,从而能够充分发挥二灰碎石的特点。为了充分比较不同类型二灰碎石的强度发展规律,本研究选用了沥青路面设计规范JTJ014一97中二灰碎石的级配,本文提出的骨架密实级配以及采用新乡电厂粉煤灰掺加1%碳酸钠:骨架密实级配,进行了不同龄期的抗压强度试验,其结果见表4一1和图4一1所示。表4一1不同级配类型二灰碎石的强度变化规律注:石灰:粉煤灰二碎石二5:15二80,沥规图4一1不同级配类型二灰碎石的强度从上述试验结果可以看出,二灰碎石混合料的强度随龄期的增长而增大,不同填充水平对二灰碎石强度影响较大,m级填充水平强度最高,它大于沥青路面设计规范中规定级配的强度,因此在后续试验中均采用工11级填充来比较。对新乡粉煤灰不加早强剂时,其强度显得偏低,但掺入1%碳酸钠后其强度增长幅度很大。2.收缩性能处于自然气候条件中的二灰碎石在经历温度和湿度变化时,会产生一定量的收缩。在收缩比较严重的情况下,往往基层表面会出现有规律的横向裂缝,并进一步发展到面层形成反射裂缝,从而危及道路的使用寿命,因此必须重视二灰碎石的千温缩性能。 一、引起收缩的原因1.干燥收缩 干燥收缩是引起二灰碎石收缩的最主要原因。二灰碎石材料内部充满大大小小各种尺寸的孔隙,这些孔隙通常由水和气体来填充。在干燥过程中,首先发生气孔水和毛细孔水的蒸发。毛细孔水的蒸发,使毛细孔内水向后退,弯月面的曲率变大,在表面张力的作用下,水的内部压力比外部压力小。随着空气湿度的降低,毛细孔中的负压逐渐增大,产生收缩力,使二灰碎石出现收缩,当毛细孔中的水蒸发完后,如继续干燥,则凝胶体颗粒的吸附水也发生部分蒸发,失去水膜的凝胶体颗粒,由于分子引力的作用,使粒子间距离变小,甚至发生新的的化学结合而收缩。 二灰碎石的干燥过程是由表面逐步扩展到内部的渐进过程,在二灰碎石中呈现出一定的水力梯度,因此产生表面收缩大内部收缩小的不均匀收缩,致使表面二灰碎石承受拉应力,内部承受压应力,当表面所受的拉应力超过其抗拉强度时,便产生裂缝。2.温度收缩通常情况下,物体总是热胀冷缩的,二灰碎石与温度变化有关的形决定于材料的热胀系数以及温度变化的幅度。随着时间的延续,二灰碎石中的水化反应产物不断增多,水化凝胶体的温度收缩系数比原材料来得大,因此,二灰碎石的温度系数会随着龄期的增加而增大,早期增长速度较快,后期较慢。然而正常情况下单纯的温度收缩并不足以引起二灰碎石基层的开裂,但是温度的收缩与干燥收缩同时产生,当温度下降时,二灰碎石产生一个温度的梯度,使得表面承受拉应力,内部承受压应力,这就与失水干燥过程相一致,两种收缩作用叠加就容易出现二灰碎石的开裂。二、收缩的影响因素二灰碎石是由石灰、粉煤灰、碎石和水这四个部分组成。碎石是其中含量最多的部分,它一般要占到材料干重的80,0左右,它结构致密,性能稳定,强度高,在二灰碎石的使用过程中碎石发生收缩的可能性最小,变形量也最小,一般认为它的掺入对二灰收缩起抑制作用,在可能情况下应尽量加大集料在二灰碎石中的含量,当然过大的集料含量会增加压实难度,降低二灰碎石强度。表4一2、表4一3及4一2、图4一3表明不同级配二灰碎石的干缩和温缩试验结果。由上述结果可以看出,骨架密实的二灰碎石无论从干缩还是温缩性能都要优于基层施工技术规范和沥青路面设计规范中的二灰碎石。这是因为在骨架二灰碎石中,集料堆积形成骨架结构,二灰结合料填充在集料颗粒间的空隙中,集料骨架结构对空隙中的二灰起着有效的抑制作用。但是在悬浮结构的二灰碎石中,集料颗粒之间相互分离,对二灰收缩的抑制作用就大大地降低了。其次,较小引起二灰碎石收缩的组分就是粉煤灰。在二灰碎石的养生过程中粉煤灰颗粒从边缘逐渐向中心发生水化反应,产生水化产物,由于粉煤灰颗粒的活性相对较低,水化反应进行得比较慢,因水化而发生的化学收缩非常小。在二灰碎石中粉煤灰颗粒会起到一种微集料作用,从而抑制二灰的收缩,在水泥混凝土中经常加入粉煤灰,作为一种有效的措施,以降低水泥浆收缩。因此,粉煤灰不会对二灰碎石的开裂产生不利影响。 第三组分是石灰,在二灰碎石中通常采用经充分消解的熟石灰。当二灰中的石灰含量增加时,就会加大混合料水化过程的碱度,从而易产生高碱度的水化硅酸钙产物,它的干燥收缩量比一般碱度的水化硅酸钙高出2一3倍,因此过多的石灰含量会增大二灰碎石的收缩,在二灰碎石强度足够的情况下,应适当减少石灰的含量。 第四组分是水。水对二灰碎石的生产、施工、养生以及以后的路用性能都起着很关键的作用,水一方面是二灰中水化反应所必须,另一方面能够润湿材料,使得混合料在压实过程中达到最大的密实度。在一定的压实条件下,只有处于最佳含水量,材料才能被压实到最大干密度,从而使得材料具有良好的路用性能。但是在生产过程中,往往在二灰碎石中加入过量的水份,使得拌和容易,过多的水造成的不良后果是:一方面施工过程中基层平整度、高程难以控制;另一方面二灰碎石的性能也不能保证。多余水份在二灰碎石中形成水囊,形成大量的毛细孔隙,增加了材料中的空隙率,过多水份蒸发后会造成二灰碎石的严重收缩开裂,这是二灰碎石早期开裂的最主要因素。因此,严格控制二灰碎石混合料中的含水量对抑制收缩开裂非常重要。 总而言之,在二灰碎石中,集料能够抑制收缩开裂,粉煤灰不会对材料整体的收缩开裂产生什么不利影响,未充分消解的石灰颗粒往往引起二灰碎石的后期膨胀开裂,太大的石灰含量会增加二灰的收缩系数,过多的水份容易引起二灰碎石的早期收缩开裂,必须严格控制二灰碎石混合料中的含水量,通过调整石灰、粉煤灰和水的组成配比,将二灰自身的收缩控制在最低,在二灰碎石中适当增加集料的含量,降低二灰比例,从而达到减少收缩的目的。3.稳定性二灰碎石的稳定性是指在路面使用过程中,基层在经受自然条件对它产生作用时,保持自身性能的能力。二灰碎石的稳定性主要体现为水稳定性能,所以必须分析水存在对二灰碎石性能可能造成的不利影响。随着含水量增加,水分在材料孔隙中的锲入作用会减弱材料内部结合力,材料强度都有不同程度的降低。在建筑材料性能研究中,常采用软化系数来表示材料的耐水性。对于受水浸泡或处于潮湿环境中工作的重要建筑物,必须选用软化系数不低于0.75的材料建造。为了说明骨架密实型二灰碎石的水稳定性,在每一龄期利用二灰碎石成型二组平行试件,一组浸水24h,另一组不浸水,同时测试它们的无侧限抗压强度,试验结果列于表4一4及图4一4中。由表4一4可以看出,骨架密实型二灰碎石的抗水害能力明显要优于沥青路面设计规范中规定的二灰碎石,而且在二灰碎石强度形成初期,其抗水害能力较弱,当龄期达28天后其抗水害能力有明显的提高。4.抗冲刷性能表面水通过各种途径进入沥青路面结构层内,如果进入的水不能及时排出,而停留在面层和基层的交界面上,就会使得基层局部潮湿甚至接近饱和。在行车荷载作用下,路面结构内或基层材料中的自由水会产生相当大的水压力,这种有压力的水会冲刷基层材料中的细料,一次冲刷的量很小,但行车荷载的反复多次冲刷,就会积少成多,在裂缝中形成细料浆,在行车荷载反复作用下,细料将被逐渐挤压出裂缝,形成沥青面层上裂缝处的唧浆(沥青路面唧浆是地表水通过沥青碎石面层渗入基层,使 基层软化、膨胀,在车辆荷载的连续作用下,基层中细小颗粒从面层空隙喷射出来)现象。 行车荷载在路面结构层内引起的水压力是如此之大,它不但可以冲刷级配集料基层中的细料,而且可以冲刷石灰稳定基层材料中的细料。基层的冲刷程度与进入路面结构层的水量大小有很大关系,进入的水愈多,冲刷程度愈大。冲刷程度还与基层材料本身有很大关系。对于未处治级配集料来说,集料中小于0.075mm的粉粒愈多,冲刷愈严重;对于无机结合料处治基层材料,稳定细粒冲刷最严重,稳定粒料土的冲刷程度随集料中0.O75mm以下颗粒含量而变,细料含量愈多,冲刷愈严重。因此二灰碎石混合料的设计应在满足行车荷载对其强度要求的前提下,尽量减少其缩裂,达到充分发挥二灰碎石板体性能的目的,而二灰碎石混合料的强度、温缩、干缩以及抗冲刷性能与混合料的配合比、骨料的级配组成、气候变化,施工条件等均有直接关系,其中混合料的配合比是其最主要的内在因素。五、骨架密实型二灰碎石基层修筑技术研究了二灰碎石混合料的组成结构,以及组成结构对使用性能的影响,从而确定了具有优良使用性能的混合料组成比例和结构形成,此外对不同类型二灰碎石混合料的使用性能进行了较为全面的对比分析,在此基础上,提出了骨架密实型二灰碎石混合料的配合比设计方法,同时研究了二灰碎石基层的施工工艺、质量控制以及提高二灰碎石混合料早期强度的措施等。1. 材料组成设计11 集料级配研究为了能够在室内较好地模拟施工现场振动压路机对道路材料的压实作用,在确定集料级配时,采用振动台振实法进行逐级填充试验。所谓逐级填充是将所选用的最大粒径 D0集料( 根据规范规定,选取 19 315mm 粒径碎石) 为主骨料,以后各级的规格以工程习惯划分,一般划分为 9 5 19mm、4 75 9 5mm、2 36 4 75mm、0 6 1 18mm 等,每级粒径集料的用量尽可能的填充前一级的空隙而对前一级或前几级的骨架不构成干涉为原则。(1)级填充振实试验级填充振实试验结果如图 1 所示。由图 1 可知,当 D1( 9 5 19mm) 用量为 D0用量的 20%时,混合集料振实密度达到最大值。(2)级填充振实试验以 D0、D1的用量比为 100 20 进行级填充试验,结果如图 2 所示由图2可知,对于 D0集料,当其填充了 20%的 D1集料后,再填充20%的 D2( 4 75 9 5mm) 集料,其振实密度达到最大。(3)级填充振实试验取 D0、D1、D2的用量比为 100 20 20 进行级填充试验,结果如图 3 所示。由图3 可知,在 D0、D1、D2的用量比为 100 20 20时,填充 20%的 D3( 2 36 4 75mm) 集料,其振实密度达到最大。(4) 级填充振实试验取 D0、D1、D2、D3的用量比为100 20 20 20 进行级填充试验,结果如图 4 所示。由图 4 可知,在最佳三级填充的基础上,同样是填充 20%的级填充料 D4( 1 18 2 36mm) ,其填充效果最佳。(5) 级填充振实试验取 D0、D1、D2、D3、D4的用量比 100:20:20:20:20 进行级填充试验,结果如图 5 所示。(6)集料级配根据逐级填充试验结果,不同填充水平下的二灰稳定碎石主骨料级配如表1所示。将表 1 由填充试验确定的集料级配转换为日常使用的以筛孔通过率表示的集料级配,如表 2 所示。1 2 石灰、粉煤灰最佳比例研究研究表明,石灰和粉煤灰的比例有一个最佳值。以 7 天无侧限抗压强度为指标,取石灰与粉煤灰的比例为 1 2 1 5,来研究二灰的最佳比例,试验结果如表 3 所示。试验结果表明,随着粉煤灰含量的增加,根据规范要求 ( 高速公路、一级公路,二灰稳定碎石 7 天饱水无侧限抗压强度标准为 0 8 1 1MPa) 和经济、实用的原则,初步选定石灰 粉煤灰为 1 2 1 3,具体试验采用 1 2 0 及 1 2 5 两种比例。1. 3 二灰与集料最佳比例研究要使二灰稳定碎石形成骨架密实结构,二灰与集料之间有一适宜的比例。( 1) 集料密度试验集料本身的密实状态影响二灰的填充量,集料的密度一般分为堆积、振实、捣实密度。研究表明,捣实密度更接近重型压路机下的集料密度,而且由此设计的二灰稳定碎石性能更好。集料的捣实密度试验结果如表 4 所示。根据集料的密度 ( 空隙率) 和二灰结合料的干密度,便可通过计算,确定二灰结合料的用量。( 2) 配合比计算二灰稳定碎石混合料的最大干密度以及二灰与骨料的配合比计算结果分列于表 5。( 3) 试验室配合比确定按照级 级填充结果决定的集料级配制作试件。测定 7 天无侧限抗压强度,其试验结果列于表 6。由试验结果可以看出,级、级、级三种级配制作的试件其 7 天无侧限抗压强度均满足规范的要求。其中在石灰: 粉煤灰 =1 2 0 及 1 2 5 的情况下,级填充试件强度最高。因此,选取级填充试验结果作为集料设计级配。1 4 工地集料级配确定考虑到施工的方便性和经济性,避免摊铺过程中出现离析现象,以级填充试验结果为基础,对试验级配进行适当的调整,调整后的建议级配如表7 所示。根据前文确定的二灰与集料的比例 ( 二灰 集料= 21 79) ,即可确定二灰稳定碎石施工配合比,如表 8 所示,其中建议级配 B ( 石灰 粉煤灰 集料 =7 0 14 0 79 0) 作为对比试验。二灰稳定碎石强度主要来源于两个方面,集料颗粒的内摩阻力和填充料的粘结力。采用逐级填充方法确定集料级配,并使粗集料形成骨架结构; 以捣实密度为基础,通过理论计算结合试验确定二灰与集料的最佳比例,从而使混合料形成骨架密实结构。通过力学强度、稳定性能、收缩性能、冲刷性能等方面对设计级配进行了检验。结果表明,本文设计的骨架密实型二灰稳定碎石各方面的性能都要优于规范级配的二灰稳定碎石。六、二灰碎石混合料的施工及质量控制以下资料是文献中所记载1999年,为了验证实验结果,在河南省新乡市汲詹线铺筑了试验路,在此基础上,在汲詹线上大面积推广骨架密实型二灰碎石,共使用粉煤灰0.6万多吨,铺筑二灰稳定碎石基层近20万平方米。一、试验工程中材料组成1.原材料(1)石灰采用新乡产熟石灰(2)粉煤灰取自新乡电厂和辉县电厂2.配合比(l)面层采用3cm中粒式沥青混凝土(AC一16一I),4cm中粒式沥青混凝土(AC一20一I)。(2)基层采用20cm二灰稳定碎石,试验段碎石级配采用m级填充,具体配比如表6一1所示。根据工地使用的材料,重新进行配合比设计,其比例为:石灰:粉煤灰:碎石二7.5:22.5:70,最大干容重为1.849/cm3,最佳含水量为10%,NaZC03掺量(占二灰重量)1%o新范线二灰碎石级配采用沥青路面设计规范中规定的级配,其配比为石灰:粉煤灰:碎石=5:15:80,最大干密度为2.039/cm”,最佳含水量为7.5%,NaZCO3掺量仍为l%。二、施工工艺1.拌和二灰稳定碎石的拌和采用集中拌合,拌合时必须掌握以下几点:(1)石灰粉煤灰要粉碎。(2)配料要准确。(3)含水量可略大于最佳含水量,含水量接近最佳值。(4)拌合要均匀。二灰稳定碎石生产流程如图6一1。2.运输厂拌的二灰碎石混合料可以用普通的自卸车运输到摊铺现场,如果运输距离太长,或混合料在运输过程中可能变干,应该用适当的布将其覆盖,以防水份损失或沿路飞扬。3.摊铺二灰碎石混合料运到工地后,应该尽可能摊铺均匀,并尽可能减少手工操作。本次摊铺采用ABG摊铺机摊铺。用该设备摊铺的混合料厚度均匀,混合料离析相对较小且平整度有大幅度提高。4.压实压实是铺筑二灰稳定碎石混合料的关键,在现场达到高的相对密实度,可使混合料具有良好的性能,钢轮压路机、轮胎压路机和振动压路机等都可用来有效地压实二灰稳定集料。由于二灰稳定集料中主要为粒料,在压实时粘性很小,所以轮胎压路机和振动压路机是最适宜的压实工具。石灰粉煤灰混合料在加水拌合后可以有较长时间进行有效的压实,我国规范规定在拌和后24小时内完成碾压。5.养生石灰粉煤灰碎石混合料碾压结束后,必须进行养生,养生可以在第二天开始,一般的养生期为7天。养生时要注意观察表面失水情况,如水份不足应加强养生的频率,以避免由于夏季高温失水太多从而较早产生干缩裂缝。三、试验路数据检测和施工质量控制试验路各材料强度检测时,直接取现场拌合料成型试件,养生,测其无侧限抗压强度,其它项目检测按部颁有关标准执行。一、无侧限抗压强度汲詹线试验段二灰稳定碎石七天无侧限抗压强度,平均值为1.75MPa,代表值为1.64MPa,其远远大于规范规定的0.SMPa要求,新范线工程二灰稳定碎石七天无侧限抗压强度的代表值为1.05MPa.二、碳酸钠含量的检测由于新乡电厂排放出的粉煤灰活性较低,不应直接用于基层,需要掺加外掺剂来提高强度。外掺剂用量多少很重要,少则起不到作用,多则增加费用,因此需对碳酸钠外掺剂的含量进行检测,以确保外掺剂的用量,具体检测方法如下:1.配制与工地完全一致的二灰碎石混合料各300克,共5份。2.按每份混合料中石灰与粉煤灰重量的0%、0.8%、1.6%、2.4%、3.2%称取碳酸钠,依次分别加入到混合料中。3.每份混合料中加入600ml蒸馏水,充分搅拌,以确保碳酸钠。溶解,静置澄清。4.用25ml输液管取上部清液,输入300ml锥形瓶中,加入少量蒸馏水(约10Oml)稀释,滴加4滴0.1%的甲基橙指示剂,用0.IN盐酸溶液滴至橙红色为止,记录各混合料的滴定体积。5.以滴定体积为纵坐标,外加碳酸钠为横坐标画图,连成一条平滑曲线。6.工地混合料。含量测定时,取有代表性样品300克,加水600ml,以同样方法用盐酸滴定,根据每次消耗盐酸体积,从标准曲线查得相应的该法可以较准确地评价现场二灰碎石混合料中掺入碳酸钠的用量,为碳酸钠掺入的二灰碎石混合料质量控制提供依据。三、二灰碎石混合料级配控制以前在检验二灰稳定碎石基层材料级配时,是把各种规格的集料按设计比例要求混在一起,再进行筛分计算,看是否符合规范给定的级配要求。然而在施工的实际操作中却完全不尽然,由于石料规格的多变性和多家料场进料,同一规格的石料也不完全相同,机器进料输送带上的顺序是粗集料、石灰、细集料、粉煤灰。为此单独检查集料的级配是否符合规范给定的要求是难以进行的。特别是作为无机结合料稳定碎石基层,从拌合场出料后,在组成级配上是否符合规范也更是无从比较。因此要想检测二灰稳定碎石路面基层出场后期的材料级配是否符合规范要求,则必须有一套新的方法。现以本课题新范线采用的沥青路面设计规范)中规定二灰碎石级配为例来说明如下方法。1.将规范规定的级配换算为各筛孔上的筛余百分率表碳酸钠百分含量。以上述级配为基础,将各筛孔的通过量换算成各筛孔上筛余百分率,见表。 3.二灰稳定碎石混合料各筛上分计筛余换算根据二灰稳定碎石组成设计结果,对所给出的石料级配范围以及粉煤灰和石灰按设计比例进行换算所得出的结果,再进行换算二灰稳定碎石混合料各筛孔上分计筛余百分率,即在同一筛孔之上相应石料含量、粉煤灰含量和石灰含量之和,则为二灰稳定碎石混合料相应各筛孔上分计筛余百分率。假定CHJ为二灰稳定碎石混合料各筛孔上分计筛余百分率,则可根据以上的换算结果和二灰稳定碎石混合料的组成因素汇总出下式:由此可计算二灰稳定碎石混合料相应各筛孔上分计筛余百分率见表6-9 因此,在二灰稳定碎石施工中,可以直接抽检混合料进行烘干筛分试验,看其是否符合BHj的要求。5.级配检验从施工现场抽查了二份有代表性的试样,将此试样进行筛分比较,筛分结果见下表。从表结果可以看出,所取的两个试样均符合级配的要求。对于试验段采用的骨架碎石级配,因其细料含量少,与石灰、粉煤灰颗粒级配相重合的部分少,在现场检验时采用水洗法,其结果如下:四、二灰碎石混合料现场压实度检测从施工现场抽检结果看,压实度一般可达到98%以上,满足规范要求。七、主要结论通过本项目的研究可得出如下结论:1.提出骨架密实型二灰稳定碎石混合料的配合比设计方法。该法分为三个层次:第一层次强调的是主骨料的骨架作用;第二层次是通过试验来确定石灰粉煤灰的最佳比例,以使石灰粉煤灰发生最佳效应;第三层次是利用石灰粉煤灰来充分填充主骨料骨架空隙,从而达到骨架密实。采用本方法设计的二灰碎石在汲詹线工程使用,收到了良好的效果。2.根据骨架密实填充理论计算得到的最大干密度和最佳含水量与标准击实试验结果基本相符,这可有效克服二灰稳定碎石混合料击实试验的不均匀和偏差。3.骨架密实型二灰碎石混合料具有优良的抗收缩、抗冲刷和水稳定性能,同时也能满足其基本力学强度要求。4.提出了一种简单适用的半刚性材料的抗冲刷试验方法。5.针对粉煤灰的具体特点,提出了通过加化学外掺剂来提高早期强度的方法。该方法用于新范、汲詹线实体工程中,收到了良好的使用效果。6.运用化学分析手段和扫描电镜、X一射线衍射、热重等方法,分析了外掺剂能提高低活性粉煤灰早期强度的机理。7.对于掺有碳酸钠的二灰碎石混合料,提出了碳酸钠。含量的检验方法,这为准确控制碳酸钠掺量起到积极作用。参考文献:1刘红瑛,牛长友,王强,戴经梁.骨架密实型二灰稳定碎石基层路用性能. J西安长安大学学报编辑部,2003.1-82孙洋. 骨架密实型二灰集料配合比设计及路用性能研究. D重庆.重庆交通大学,2010. 7-1. 29-513朱维全.骨架迷失型混凝土配合比设计和施工. J山东.交通标准化,2012.86-824

    注意事项

    本文(骨架密实型二灰碎石基层修筑技术研究论文.doc)为本站会员(爱问知识人)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    经营许可证编号:宁ICP备18001539号-1

    三一文库
    收起
    展开