欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    华东师大版九年级数学上册23.4中位线教案含答案.doc

    • 资源ID:48715       资源大小:242.50KB        全文页数:5页
    • 资源格式: DOC        下载积分:5
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要5
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    华东师大版九年级数学上册23.4中位线教案含答案.doc

    1、 1 1 1中位线【知识与技能】1.经历三角形中位线的性质定理形成过程.2.掌握三角形中位线的性质定理,并能利用它解决简单的问题.3.通过命题的教学了解常用的辅助线的作法,并能灵活运用它们解题,进一步训练说理的能力.【过程与方法】通过学习,进一步培养自主探究和合作交流的学习习惯.【情感态度】进一步了解特殊与一般的辩证唯物主义观点、转化的思想.【教学重点】三角形中位线的性质定理.【教学难点】三角形中位线的性质定理的应用.一、情境导入,初步认识在前面23.3节中,我们曾解决过如下的问题:如图,ABC中,DEBC,则ADEABC.由此可以进一步推知,当点D是AB的中点时,点E也是AC的中点.现在换一

    2、个角度考虑,如果点D、E原来就是AB与AC的中点,那么是否可以推出DEBC呢?DE与BC之间存在什么样的数量关系呢?二、思考探究,获取新知1.猜想:从画出的图形看,可以猜想:DEBC,且DE=BC.2.证明:如图,ABC中,点D、E分别是AB与AC的中点,.A=A,ADEABC(如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似),ADE=ABC,相似三角形的对应角相等,对应边成比例),DEBC且DE=BC.思考:本题还有其他的解法吗?已知:如图所示,在ABC中,AD=DB,AE=EC.求证:DEBC,DE=BC.【分析】要证DEBC,DE=BC,可延长

    3、DE到F,使EF=DE,于是本题就转化为证明DF=BC,DEBC,故只要证明四边形BCFD为平行四边形.还可以作如下的辅助线.【归纳结论】我们把连结三角形两边中点的线段叫做三角形的中位线,并且有三角形的中位线平行于第三边,并且等于第三边的一半.【教学说明】介绍中位线时,强调它与中线的区别.例1 求证:三角形的一条中位线与第三边上的中线互相平分.已知:如图,在ABC中,AD=DB,BE=EC,AF=FC.求证:AE、DF互相平分.【分析】要证AE、DF互相平分,即要证四边形ADEF为平行四边形.证明:连结DE、EF.AD=DB,BE=EC,DEAC,同理可得EFBA.四边形ADEF是平行四边形.

    4、AE、DF互相平分.例2 如图,在ABC中,D、E分别是边BC、AB的中点,AD、CE相交于点G.求证:.【分析】有两边中点易想到连接两边中点构造三角形的中位线.思考:在例2的图中取AC的中点F,假设BF与AD相交于点G,如图,那么我们同理可得,即两图中的G与G是重合的,由此我们可以得出什么结论?归纳:三角形三条边上的中线交于一点,这个点就是三角形的重心,重心与一边中点的连线的长是对应中线长的.三、运用新知,深化理解1.如图,在ABCD中,有E、F分别是AD、BC上的点,且DE=CF,BE和AF的交点为M,CE和DF的交点为N.求证:MNAD,MN=12AD.2.如图,在四边形ABCD中,对角

    5、线AC、BD交于点O,E、F分别是AB、CD的中点,且AC=BD.求证:OM=ON.【答案】1.解:连结EF,证四边形ABFE和四边形DCFE均为平行四边形,得FM=AM,FN=DN,MNAD,MN=AD.2.解:取BC的中点G,连接EG,FG,BG=CG,BE=AE,GE=AC,EGACONM=GEF,同理GF=BD,OMN=GFE,AC=BD,GE=GF,GEF=GFE,ONM=OMN,OM=ON.【教学说明】引导学生取BC的中点,构造中位线.四、师生互动,课堂小结1.三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.2.三角形中位线定理的应用.3.三角形重心的性质.1.布置作业:从教材相应练习和“习题23.4”中选取.2.完成练习册中本课时练习的“课时作业”部分.本课时从学过的知识入手猜想中位线的性质,并通过动手画图、操作,证明猜想,体会知识的形成过程,加深对知识的理解.在证明的过程中举一反三,用多种方法证明三角形中位线定理,通过具体的实例分析,提高学生应用知识的能力.


    注意事项

    本文(华东师大版九年级数学上册23.4中位线教案含答案.doc)为本站会员(田海滨)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!




    宁ICP备18001539号-1

    三一文库
    收起
    展开