欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    双曲线练习题经典含答案.doc

    • 资源ID:50709       资源大小:390KB        全文页数:7页
    • 资源格式: DOC        下载积分:5
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要5
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    双曲线练习题经典含答案.doc

    1、精品文档,仅供学习与交流,如有侵权请联系网站删除双曲线练习题一、选择题:1已知焦点在x轴上的双曲线的渐近线方程是y4x,则该双曲线的离心率是(A)A.B. C. D.2中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方程为(B)Ax2y2=1Bx2y2=2Cx2y2=Dx2y2=3在平面直角坐标系中,双曲线C过点P(1,1),且其两条渐近线的方程分别为2x+y=0和2xy=0,则双曲线C的标准方程为(B)A B C或 D4.已知椭圆1(ab0)与双曲线1有相同的焦点,则椭圆的离心率为( A ) ABCD5已知方程=1表示双曲线,且该双曲线两焦点间的距离为

    2、4,则n的取值范围是(A)A(1,3)B(1,)C(0,3)D(0,)6设双曲线=1(0ab)的半焦距为c,直线l过(a,0)(0,b)两点,已知原点到直线l的距离为,则双曲线的离心率为(A)A2 B C D7已知双曲线的两条渐近线与以椭圆的左焦点为圆心、半径为 的圆相切,则双曲线的离心率为( A )ABCD8双曲线虚轴的一个端点为M,两个焦点为F1、F2,F1MF2120,则双曲线的离心率为(B)A. B. C. D.9已知双曲线的一个焦点到一条渐近线的距离是2,一个顶点到它的一条渐近线的距离为,则m等于( D ) A9 B4 C2 D,310已知双曲线的两个焦点为F1(,0)、F2(,0)

    3、M是此双曲线上的一点,且满足则该双曲线的方程是(A)A.y21 Bx21 C.1 D.111设F1,F2是双曲线x21的两个焦点,P是双曲线上的一点,且3|PF1|4|PF2|,则PF1F2的面积等于(C) A4 B8 C24 D4812过双曲线x2y28的左焦点F1有一条弦PQ在左支上,若|PQ|7,F2是双曲线的右焦点,则PF2Q的周长是(C)A28B148 C148 D813已知双曲线=1(b0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为2b,则双曲线的方程为(D)A=1B=1C=1D=114设双曲线=1(a0,b0

    4、的左、右焦点分别为F1,F2,以F2为圆心,|F1F2|为半径的圆与双曲线在第一、二象限内依次交于A,B两点,若3|F1B|=|F2A|,则该双曲线的离心率是(C)A BC D215过双曲线的右焦点作直线l交双曲线于A、B两点,若|AB|=4,则这样的直线共有( C )条。A1 B2 C3 D416已知双曲线C:=1(a0,b0),以原点为圆心,b为半径的圆与x轴正半轴的交点恰好是右焦点与右顶点的中点,此交点到渐近线的距离为,则双曲线方程是(C)A=1 B=1 C=1D=117如图,F1、F2是双曲线=1(a0,b0)的左、右焦点,过F1的直线l与双曲线的左右两支分别交于点A、B若ABF2为

    5、等边三角形,则双曲线的离心率为(B)A4BCD18如图,已知双曲线=1(a0,b0)的左右焦点分别为F1,F2,|F1F2|=4,P是双曲线右支上的一点,F2P与y轴交于点A,APF1的内切圆在边PF1上的切点为Q,若|PQ|=1,则双曲线的离心率是(B)A3B2CD19已知点,动圆与直线切于点,过、与圆相切的两直线相交于点,则点的轨迹方程为( B )A B C(x 0) D20.已知椭圆与双曲线有共同的焦点,椭圆的一个短轴端点为,直线与双曲线的一条渐近线平行,椭圆与双曲线的离心率分别为, 则取值范围为( D )A. B. C. D. 21.已知双曲线的顶点与焦点分别是椭圆的焦点与顶点,若双曲

    6、线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为( D )AB CD22.双曲线过其左焦点F1作x轴的垂线交双曲线于A,B两点,若双曲线右顶点在以AB为直径的圆内,则双曲线离心率的取值范围为( A )A(2,+) B(1,2)C(,+) D(1,)23.已知双曲线的右焦点F,直线与其渐近线交于A,B两点,且为钝角三角形,则双曲线离心率的取值范围是( D )A. () B. (1,) C. ()D. (1,)24我们把离心率为e的双曲线1(a0,b0)称为黄金双曲线给出以下几个说法:双曲线x21是黄金双曲线;若b2ac,则该双曲线是黄金双曲线;若F1B1A290,则该双曲线是黄

    7、金双曲线;若MON90,则该双曲线是黄金双曲线其中正确的是(D)A B C D二、填空题:25如图,椭圆,与双曲线,的离心率分别为e1,e2,e3,e4,其大小关系为_ _ e1e2e40,b0)的左、右焦点分别为F1(c,0)、 F2(c,0)若双曲线上存在点P,使,则该双曲线的离心率的取值范围是_ (1,1)29.已知双曲线x2=1的左、右焦点分别为F1、F2,P为双曲线右支上一点,点Q的坐标为(2,3),则|PQ|+|PF1|的最小值为7三、解答题:30已知曲线C:x21.(1) 由曲线C上任一点E向x轴作垂线,垂足为F,动点P满足,求点P的轨迹P的轨迹可能是圆吗?请说明理由;(2) 如

    8、果直线l的斜率为,且过点M(0,2),直线l交曲线C于A、B两点,又,求曲线C的方程31已知中心在原点的双曲线C的右焦点为,右顶点为.()求双曲线C的方程()若直线与双曲线恒有两个不同的交点A和B且(其中为原点),求k的取值范围32.已知中心在原点的双曲线C的右焦点为(2,0),实轴长为2.(1)求双曲线C的方程;(2)若直线l:ykx与双曲线C左支交于A、B两点,求k的取值范围;(3)在(2)的条件下,线段AB的垂直平分线l0与y轴交于M(0,m),求m的取值范围33.已知椭圆C:+=1(ab0)的离心率为,椭圆C与y轴交于A、B两点,|AB|=2()求椭圆C的方程;()已知点P是椭圆C上的

    9、动点,且直线PA,PB与直线x=4分别交于M、N两点,是否存在点P,使得以MN为直径的圆经过点(2,0)?若存在,求出点P的横坐标;若不存在,说明理由30.已知曲线C:x21.(1)由曲线C上任一点E向x轴作垂线,垂足为F,动点P满足,求点P的轨迹P的轨迹可能是圆吗?请说明理由; (2)如果直线l的斜率为,且过点M(0,2),直线l交曲线C于A、B两点,又,求曲线C的方程解:(1)设E(x0,y0),P(x,y),则F(x0,0),(xx0,y)3(xx0,yy0)代入x1中,得x21为P点的轨迹方程当时,轨迹是圆(2)由题设知直线l的方程为yx2,设A(x1,y1),B(x2,y2),联立方

    10、程组消去y得:(2)x24x40.方程组有两解,20且0,2或0,b0)由已知得:a,c2,再由a2b2c2,b21,双曲线C的方程为y21.(2)设A(xA,yA)、B(xB,yB),将ykx代入y21,得:(13k2)x26kx90.由题意知解得k1.当k1时,l与双曲线左支有两个交点(3)由(2)得:xAxB,yAyB(kxA)(kxB)k(xAxB)2.AB的中点P的坐标为.设直线l0的方程为:yxm,将P点坐标代入直线l0的方程,得m.k1,213k20.m2.m的取值范围为(,2)33.已知椭圆C:+=1(ab0)的离心率为,椭圆C与y轴交于A、B两点,|AB|=2()求椭圆C的方

    11、程;()已知点P是椭圆C上的动点,且直线PA,PB与直线x=4分别交于M、N两点,是否存在点P,使得以MN为直径的圆经过点(2,0)?若存在,求出点P的横坐标;若不存在,说明理由【解答】解:()由题意可得e=,2b=2,即b=1,又a2c2=1,解得a=2,c=,即有椭圆的方程为+y2=1;()设P(m,n),可得+n2=1,即有n2=1,由题意可得A(0,1),B(0,1),设M(4,s),N(4,t),由P,A,M共线可得,kPA=kMA,即为=,可得s=1+,由P,B,N共线可得,kPB=kNB,即为=,可得s=1假设存在点P,使得以MN为直径的圆经过点Q(2,0)可得QMQN,即有=1,即st=4即有1+1=4,化为4m2=16n2(4m)2=164m2(4m)2,解得m=0或8,由P,A,B不重合,以及|m|2,可得P不存在【精品文档】第 7 页


    注意事项

    本文(双曲线练习题经典含答案.doc)为本站会员(飞猪)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!




    宁ICP备18001539号-1

    三一文库
    收起
    展开