欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    多边形及其内角和知识点.docx

    • 资源ID:57785       资源大小:101.60KB        全文页数:9页
    • 资源格式: DOCX        下载积分:5
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要5
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    多边形及其内角和知识点.docx

    1、多边形及其内角和一、知识点总结定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。凸多边形分类 1:凹多边形正多边形:各边相等,各角也相等的多边形叫做正多边形。分类 2:多边形非正多边形:1、 n 边形的内角和等于180 ( n-2)。多边形的定理2 、任意凸形多边形的外角和等于360。3、n 边形的对角线条数等于1/2 n( n-3)只用一种正多边形:3、4、 6/。镶嵌拼成 360 度的角只用一种非正多边形(全等): 3、 4。知识点一:多边形及有关概念1、 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.(1)多边形的一些要素:边:组成多边形的各条线段

    2、叫做多边形的边顶点:每相邻两条边的公共端点叫做多边形的顶点内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有 n 个内角。外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。(2)在定义中应注意:一些线段(多边形的边数是大于等于3 的正整数);首尾顺次相连,二者缺一不可;理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间多边形 .2、多边形的分类:(1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图 1) .本章所讲的多边形都是指凸多边形 .凸多边

    3、形凹多边形图 1(2)多边形通常还以边数命名,多边形有 n 条边就叫做 n 边形三角形、四边形都属于多边形,其中三角形是边数最少的多边形1知识点二:正多边形各个角都相等、各个边都相等的多边形叫做正多边形。如正三角形、正方形、正五边形等。正三角形正方形正五边形正六边形正十二边形要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可 . 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图 2,BD 为四边形 AB

    4、CD的一条对角线。要点诠释:(1)从 n 边形一个顶点可以引(n 3)条对角线,将多边形分成(n2)个三角形。(2)n 边形共有条对角线。知识点四:多边形的内角和公式1.公式:边形的内角和为.2.公式的证明:证法 1:在边形内任取一点,并把这点与各个顶点连接起来,共构成个三角形,这个三角形的内角和为,再减去一个周角,即得到边形的内角和为.证法2:从边形一个顶点作对角线,可以作条对角线,并且边形被分成个三角形,这个三角形内角和恰好是边形的内角和,等于.证法 3:在边形的一边上取一点与各个顶点相连,得个三角形,边形内角和等于这个三角形的内角和减去所取的一点处的一个平角的度数,即.要点诠释:(1)注

    5、意:以上各推导方法体现出将多边形问题转化为三角形问题来解决的基础思想。(2)内角和定理的应用:已知多边形的边数,求其内角和;已知多边形内角和,求其边数。知识点五:多边形的外角和公式1.公式: 多边形的外角和等于360 .2.多边形外角和公式的证明:多边形的每个内角和与它相邻的外角都是邻补角,所以边形的内角和加外角和为,外角和等于.注意: n 边形的外角和恒等于360, 它与边数的多少无关。2要点诠释:(1)外角和公式的应用:已知外角度数,求正多边形边数;已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系: n 边形的内角和等于(n 2) 180 (n 3, n 是正整数 )

    6、可见多边形内角和与边数n 有关,每增加1 条边,内角和增加180。多边形的外角和等于360,与边数的多少无关。知识点六:镶嵌的概念和特征1、定义: 用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌 )。这里的多边形可以形状相同,也可以形状不相同。2、实现镶嵌的条件:拼接在同一点的各个角的和恰好等于360;相邻的多边形有公共边。3、常见的一些正多边形的镶嵌问题:(1)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360。(2)只用一种正多边形镶嵌地面事实上,正n 边形的每一个内角为,要求 k 个正 n 边形各有一个

    7、内角拼于一点,恰好覆盖地面,这样 360,由此导出k2,而 k 是正整数,所以n 只能取 3,4,6。因而,用相同的正多边形地砖铺地面,只有正三角形、正方形、正六边形的地砖可以用。二、经典例题透析类型一:多边形内角和及外角和定理应用1一个多边形的内角和等于它的外角和的5 倍,它是几边形?举一反三:【变式 1】若一个多边形的内角和与外角和的总度数为1800 ,求这个多边形的边数.【变式 2】一个多边形除了一个内角外,其余各内角和为2750,求这个多边形的内角和是少?3【变式 3】一个多边形的内角和与某一个外角的度数总和为1350,求这个多边形的边数。类型二:多边形对角线公式的运用【变式 1】一个

    8、多边形共有20 条对角线,则多边形的边数是() .A 6B 7C8D 9【变式 2】一个十二边形有几条对角线。类型三:可转化为多边形内角和问题【变式 1】如图所示,1+ 2+ 3+ 4+ 5+ 6=_.【变式 2】如图所示,求A B C D E F 的度数。类型四:实际应用题4如图,一辆小汽车从 P 市出发,先到 B 市,再到 C 市,再到 A 市,最后返回 P 市,这辆小汽车共转了多少度角?举一反三:【变式 1】如图所示,小亮从A 点出发前进10m,向右转15,再前进10m,又向右转15,这样一直走下去,当他第一次回到出发点时,一共走了_m.【变式 2】小华从点 A 出发向前走 10 米,向

    9、右转 36,然后继续向前走 10 米,再向右转 36,他以同样的方法继续走下去,他能回到点 A 吗?若能,当他走回点 A 时共走了多少米?若不能,写出理由。【变式 3】如图所示是某厂生产的一块模板,已知该模板的边AB CF, CD 4AE. 按规定 AB 、CD 的延长线相交成80角,因交点不在模板上,不便测量. 这时师傅告诉徒弟只需测一个角,便知道AB 、 CD 的延长线的夹角是否合乎规定,你知道需测哪一个角吗?说明理由.类型五:镶嵌问题【变式 1】分别用形状、大小完全相同的三角形木板;四边形木板;正五边形木板;正六边形木板作平面镶嵌,其中不能镶嵌成地板的是()A 、B 、C、D 、【变式

    10、2】用三块正多边形的木板铺地,拼在一起并相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数应是 ( )A 、 4B 、 5C、 6D、 8三、综合练习一、选择题:1. 一个多边形的内角和是 720, 则这个多边形是 ( )A.四边形B.五边形C.六边形D.七边形2.一个多边形的内角和比它的外角和的3 倍少 180, 这个多边形的边数是()A.5B.6C.7D.83.若正 n 边形的一个外角为60, 则 n 的值是 () A.4 B.5 C.6 D.84.下列角度中 , 不能成为多边形内角和的是()A.600 B.720C.900 D.10805.若一个多边形的内角和与外角和

    11、之和是1800, 则此多边形是 ()A.八边形B.十边形C.十二边形D.十四边形6.下列命题:多边形的外角和小于内角和,三角形的内角和等于外角和, 多边形的外角和是指这个多边形所有外角之和, 四边形的内角和等于它的外角和. 其中正确的有 ()A.0 个B.1个C.2个D.3个7.一个多边形的边数增加2 条,则它的内角和增加()A. 180B.90C.360 D. 5408.过多边形的一个顶点可以作7条对角线,则此多边形的内角和是外角和的()A.4倍B.5倍C.6倍D.3倍9.在四边形ABCD 中,A 、B 、C 、D 的度数之比为 2343,则D 的外角等于 ()A. 60B.75C.90D.

    12、12010. 在各个内角都相等的多边形中,一个内角是与它相邻的一个外角的3 倍,那么这个多边形的边数是( )A. 4B. 6C. 8D. 1011. 如图, ABCD EF, 则下列各式中正确的是()A. 1 2 3180B.1 2 390C. 1 2 390D.2 3 118012. 在下列条件中:ABC A :B : C 1 : 2 : 3A90BABC 中,能确定ABC 是直角三角形的条件有 () . . . . 二、填空题51. 五边形的内角和等于 _度 .2. 若一凸多边形的内角和等于它的外角和, 则它的边数是 _.3. 正十五边形的每一个内角等于 _度 .4. 十边形的对角线有 _

    13、条 .5. 内角和是 1620的多边形的边数是 _.6.一个多边形的每一个外角都等于36,那么这个多边形的内角和是.7.一个多边形的内角和是外角和的4 倍,则这个多边形是边形 .8.已知等腰梯形 ABCD中, AD BC,若 B= 1 D,则 A 的外角是.9题图39. 如图在 ABC中, D 是 ACB与 ABC的角平分线的交点, BD的延长线交 AC于 E,且 EDC=50,则 A 的度数为.10. 如图,在六边形ABCDEF中, AF CD,AB DE,且 A =120 , B=80,则 C 的度数是, D 的度数是10题图三、计算题1. 一个多边形的每一个外角都等于45,求这个多边形的

    14、内角和 .2. 一个多边形的每一个内角都等于144,求它的边数 .3. 如果四边形有一个角是直角,另外三个角的度数之比为2 3 4,那么这三个内角的度数分别是多少?4. 一个正多边形的一个内角比相邻外角大36,求这个正多边形的边数.5.已知多边形的内角和等于1440,求 (1) 这个多边形的边数,(2) 过一个顶点有几条对角线,(3) 总对角线条数 .26. 一个多边形的外角和是内角和的,求这个多边形的边数;7627.已知一多边形的每一个内角都相等,它的外角等于内角的,求这个多边形的边数;38.一多边形内角和为2340,若每一个内角都相等,求每个外角的度数.9.已知四边形ABCD中, A: B

    15、7:5, A- C= B, C= D-40, 求各内角的度数.10. 一个多边形 , 除一个内角外 , 其余各内角之和等于 1000 ,求这个内角及多边形的边数 .11. 如图 , 一个六边形的六个内角都是120,AB=1,BC=CD=3,DE=2,求该六边形的周长.AFBECD7四、拓展练习1. 探究:( 1)如图12 与BC 有什么关系?为什么?( 2)把图ABC 沿 DE 折叠,得到图,填空: 1 2_BC ( 填“”“”“”) ,当A40 时,BC +12 =_.( 3)如图,是由图的ABC 沿 DE 折叠得到的,如果A30 ,则 xy360(BC +12 )360,从而猜想 xy

    16、与A 的关系为.图图图2.如图 1、图 2、图 3 中,点 E 、 D 分别是正ABC 、正四边形 ABCM 、正五边形 ABCMN 中以 C 点为顶点的一边延长线和另一边反向延长线上的点,且ABE 与BCD 能互相重合,BD 延长线交 AE 于点 F .( 1)求图 1 中,AFB 的度数;( 2)图 2 中,AFB 的度数为 _,图 3 中,AFB 的度数为 _ ;图 1图 2图 33( 1)如图 1,有一块直角三角板XYZ 放置在 ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点 B、 C ABC 中, A=30,则 ABC+ ACB=_ , XBC+ XCB=_ ( 2)如图 2,改变直角三角板XYZ 的位置,使三角板XYZ 的两条直角边XY 、 XZ 仍然分别经过B 、 C,那么 ABX+ ACX 的大小是否变化?若变化,请举例说明;若不变化,请求出ABX+ ACX 的大小8


    注意事项

    本文(多边形及其内角和知识点.docx)为本站会员(飞猪)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!




    宁ICP备18001539号-1

    三一文库
    收起
    展开