欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    平面六杆机构设计.doc

    • 资源ID:80220       资源大小:367.50KB        全文页数:10页
    • 资源格式: DOC        下载积分:5
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要5
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    平面六杆机构设计.doc

    1、机械原理大作业 姓名: 班级: 材料124 小组数据: 3 B 一、题目:计算平面连杆机构的运动学分析1,图a所示的为一平面六杆机构。设已知各构件的尺寸如表1所示,原动件1以等角速度1=1rad/s沿着逆时针方向回转,试求各从动杆件的角位移、角速度和角加速度以及E点的位移、速度和加速度的变化情况。表1 平面六杆机构的尺寸参数(单位:mm), L1L2L3L4L5L6ABC26.5105.69587.548.43960L3=95%crank_rocker222_mainclear;l1=26.5;l2=105.6;l3=95;l4=87.5;l5=48.4;l6=39.0;l9=65.0;lag

    2、159.1;xg=153.5;yg=41.7;omega1=1;theta7=60;alpha1=0;hd=pi/180;du=180/pi; m=-1;for n1=1:360theta1=(n1-1)*hd;aa=2*l1*l3*sin(theta1);bb=2*l3*(l1*cos(theta1)-l4);cc=l2*l2-l1*l1-l3*l3-l4*l4+2*l1*l4*cos(theta1);theta3(n1)=2*atan(aa+m*sqrt(aa*aa+bb*bb-cc*cc)/(bb-cc);s1=l3*sin(theta3)-l1*sin(theta1);theta2(

    3、n1)=atan(s1/(l4+l3*cos(theta3)-l1*cos(theta1);xe=l1*cos(theta1)+l2*cos(theta2)+l9*cos(theta2-theta7);ye=l1*sin(theta1)+l2*sin(theta2)+l9*sin(theta2-theta7);s2=yg-ye;theta8(n1)=atan(s2/(xg-xe);s3=(xe-xg).*(xe-xg)+(ye-yg).*(ye-yg)+l5*l5-l6*l6;theta9(n1)=acos(s3/(2*l5*sqrt(xe-xg).*(xe-xg)+(ye-yg).*(ye-

    4、yg);theta5(n1)=theta8(n1)-theta9(n1)+pi;s4=ye+l5*sin(theta8-theta9)-yg;theta6(n1)=atan(s4/(xe+l5*cos(theta8-theta9)-xg);theta9(n1)=2*pi-(theta7-theta2(n1); omega3(n1)=omega1*l1*sin(theta1-theta2)/l3/sin(theta3-theta2);omega2(n1)=-omega1*l1*sin(theta1-theta3)/l2/sin(theta2-theta3);omega5(n1)=omega2(n

    5、1)*(l2*sin(theta2(n1)-theta6(n1)+l9*sin(theta2(n1)-theta7-theta6(n1)+omega1*l1*sin(theta1-theta6(n1)/l5/sin(theta5(n1)-theta6(n1);omega6(n1)=-omega2(n1)*(l2*sin(theta2(n1)-theta5(n1)+l9*sin(theta2(n1)-theta7-theta5(n1)+omega1*l1*sin(theta1-theta5(n1)/l6/sin(theta5(n1)-theta6(n1); s4=l2*omega2(n1)*om

    6、ega2(n1)+l1*omega1*omega1*cos(theta1-theta2)-l3*omega3(n1)*omega3(n1)*cos(theta3-theta2);s5=l3*omega3(n1)*omega3(n1)-l1*omega1*omega1*cos(theta1-theta3)-l2*omega2(n1)*omega2(n1)*cos(theta2-theta3);s6=omega1*omega1*l1*cos(theta1-theta6(n1)+omega2(n1)*omega2(n1)*(l2*cos(theta2(n1)-theta6(n1)+l9*cos(th

    7、eta2(n1)-theta7-theta6(n1)-l5*omega5(n1)*omega5(n1)*cos(theta5(n1)-theta6(n1)-l6*omega6(n1)*omega6(n1);s7=omega1*omega1*l1*cos(theta1-theta5(n1)+omega2(n1)*omega2(n1)*(l2*cos(theta2(n1)-theta5(n1)+l9*cos(theta2(n1)-theta7-theta5(n1)-l5*omega5(n1)*omega5(n1)-l6*omega6(n1)*omega6(n1)*cos(theta6(n1)-th

    8、eta5(n1);alpha3(n1)=s4/(l3*sin(theta3-theta2);alpha2(n1)=s5/(l2*sin(theta2-theta3);alpha5(n1)=(s6+alpha2(n1)*(l2*sin(theta2(n1)-theta6(n1)+l9*sin(theta2(n1)-theta7-theta6(n1)/l5/sin(theta5(n1)-theta6(n1);alpha6(n1)=-(s7+alpha2(n1)*(l2*sin(theta2(n1)-theta5(n1)+l9*sin(theta2(n1)-theta7-theta5(n1)/l6/

    9、sin(theta5(n1)-theta6(n1);vex=-l1*omega1.*sin(theta1)-l2*omega2.*sin(theta2)-l9*omega2.*sin(theta2-theta7);vey=l1*omega1.*cos(theta1)+l2*omega2.*cos(theta2)+l9*omega2.*cos(theta2-theta7);ve=sqrt(vex.*vex+vey.*vey);aex=-l1*alpha1.*sin(theta1)-l1*omega1.*omega1.*cos(theta1)-l2*omega2.*omega2.*cos(thet

    10、a2)-l2*alpha2.*sin(theta2)-l9*alpha2.*sin(theta2-theta7)-l9*omega2.*omega2.*cos(theta2-theta7);aey=l1*alpha1.*cos(theta1)-l1*omega1.*omega1.*sin(theta1)+l2*alpha2.*cos(theta2)-l2*omega2.*omega2.*sin(theta2)+l9*alpha2.*cos(theta2-theta7)-l9*omega2.*omega2.*sin(theta2-theta7);ae=sqrt(aex.*aex+aey.*aey

    11、); end figure(1);n1=1:360; subplot(2,3,1);plot(n1,real(theta2*du),n1,real(theta3*du),n1,real(theta5*du),n1,real(theta6*du),k);title(角位移线图);xlabel(曲柄转角 phi_1/circ)ylabel(角位移/circ)grid on;hold on;text(100,100,phi_3)text(100,40,phi_2)text(100,175,phi_5)text(100,0,phi_6) subplot(2,3,2);plot(n1,real(omeg

    12、a2),n1,real(omega3),k);title(角速度23线图);xlabel(曲柄转角 phi_1/circ)ylabel(角速度 /radcdots-1)grid on;hold on;text(100,0.1,omega_2)text(100,0.35,omega_3) subplot(2,3,3);plot(n1,real(omega5),n1,real(omega6),k);title(角速度56线图);xlabel(曲柄转角phi_1/circ)ylabel(角速度/radcdots-1)grid on;hold on;text(200,14,omega_5)text(2

    13、00,25,omega_6) subplot(2,3,4);plot(n1,real(alpha2),n1,real(alpha3),k);title(角加速度23线图);xlabel(曲柄转角phi_1/circ)ylabel(角加速度/radcdots-2)grid on;hold on;text(200,0,alpha_2)text(200,-0.2,alpha_3) subplot(2,3,5);plot(n1,real(alpha5),n1,real(alpha6),k);title(角加速度56线图);xlabel(曲柄转角phi_1/circ)ylabel(角加速度/radcdo

    14、ts-2)grid on;hold on;text(200,-200,alpha_5)text(200,-450,alpha_6) subplot(2,3,6);plot(n1,real(ve),n1,real(ae),k);title(e点的速度和加速度线图 );xlabel(曲柄转角phi_1/circ) ylabel(速度/m*s-1)grid on;hold on;text(80,25,ve)text(65,45,ae) figure(2)m=moviein(20);j=0;for n1=1:5:360; j=j+1; clf; x(1)=0; y(1)=0; x(2)=l1*cos(

    15、n1-1)*hd); y(2)=l1*sin(n1-1)*hd); x(3)=l4+l3*cos(theta3(n1); y(3)=l3*sin(theta3(n1); x(4)=l4; y(4)=0; x(5)=l4+l3*cos(theta3(n1); y(5)=l3*sin(theta3(n1); x(6)=l4+l3*cos(theta3(n1)+l2-cos(theta2(n1)-theta7); y(6)=l3*sin(theta3(n1)+l2*sin(theta2(n1)-theta7); x(7)=xg+l6*cos(theta6(n1); y(7)=yg+l6*sin(th

    16、eta6(n1); x(8)=xg; y(8)=yg; plot(real(x),real(y); grid on; hold on; plot(x(1),y(1),o); plot(x(2),y(2),o); plot(x(3),y(3),o); plot(x(4),y(4),o); plot(x(5),y(5),o); plot(real(x(6),real(y(6),o); plot(real(x(7),real(y(7),o); plot(real(x(8),real(y(8),o); axis(-150 350 -150 200); title(平面六连杆机构); xlabel(mm) ylabel(mm) m(j)=getframe;endmovie(m);杆2 杆3 杆5 杆6的角位移线图杆2杆3的角速度杆5杆6的角速度线图杆2杆3的角加速度线图杆5杆6的角加速线图E点的速度加速度线图机构动画简图总体线图


    注意事项

    本文(平面六杆机构设计.doc)为本站会员(田海滨)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!




    宁ICP备18001539号-1

    三一文库
    收起
    展开