欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    机械专业外文文献翻译@外文翻译巴雷特机械手爪可编程式可弯曲部分的搬运和组装.doc

    • 资源ID:95250       资源大小:670.50KB        全文页数:16页
    • 资源格式: DOC        下载积分:5
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要5
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    机械专业外文文献翻译@外文翻译巴雷特机械手爪可编程式可弯曲部分的搬运和组装.doc

    1、MCB Industrial Robot Feature ArticleThe BarrettHand grasper programmable flexible part handling and assemblyAbstract This paper details the design and operation of the BarrettHand BH8-250, an intelligent, highly flexible eight-axis gripper that reconfigures itself in real time to conform securely to

    2、 a wide variety of part shapes without tool-change interruptions. The grasper brings enormous value to factory automation because it: reduces the required number and size of robotic work cells (which average US$90,000 each not including the high cost of footprint) while boosting factory throughput;

    3、consolidates the hodgepodge proliferation of customized gripper-jaw shapes onto a common programmable platform; and enables incremental process improvement and accommodates frequent new-product introductions, capabilities deployed instantly via software across international networks of factories.Int

    4、roductionThis paper introduces a new approach to material handling, part sorting, and component assembly called “grasping”, in which a single reconfigurable grasper with embedded intelligence replaces an entire bank of unique, fixed-shape grippers and tool changers. To appreciate the motivations tha

    5、t guided the design of Barretts grasper, we must explore what is wrong with robotics today, the enormous potential for robotics in the future, and the dead-end legacy of gripper solutions.For the benefits of a robotic solution to be realized, programmable flexibility is required along the entire len

    6、gth of the robot, from its base, all the way to the target work piece. A robot arm enables programmable flexibility from the base only up to the tool plate, a few centimeters short of the target work piece. But these last few centimeters of a robot must adapt to the complexities of securing a new ob

    7、ject on each robot cycle, capabilities where embedded intelligence and software excel. Like the weakest link in a serial chain, an inflexible gripper limits the productivity of the entire robot work cell.Grippers have individually-customized, but fixed jaw shapes. The trial-and-error customization p

    8、rocess is design intensive, generally drives cost and schedule, and is difficult to scope in advance. In general, each anticipated variation in shape, orientation, and robot approach angle requires another custom-but-fixed gripper, a place to store the additional gripper, and a mechanism to exchange

    9、 grippers. An unanticipated variation or incremental improvement is simply not allowable.By contrast, the mechanical structure of Barretts patented grasper, illustrated in Figure 1, is automatically reconfigurable and highly programmable, matching the functionality of virtually any gripper shape or

    10、fixture function in less than a second without pausing the work cell throughput to exchange grippers.For tasks requiring a high degree of flexibility such as handling variably shaped payloads presented in multiple orientations, a grasper is more secure, quicker to install, and more cost effective th

    11、an an entire bank of custom-machined grippers with tool changers and storage racks. For uninterrupted operation, just one or two spare graspers can serve as emergency backups for several work cells, whereas one or two spare grippers are required for each gripper variation potentially dozens per work

    12、 cell. And, its catastrophic if both gripper backups fail in a gripper system, since it may be days before replacements can be identified, custom shaped from scratch, shipped, and physically replaced to bring the affected line back into operation. By contrast, since graspers are physically identical

    13、 they are always available in unlimited quantity, with all customization provided instantly in software. Gripper legacy Most of todays robotic part handling and assembling is done with grippers. If surface conditions allow, vacuum suction and electromagnets can also be used, for example in handling

    14、 automobile windshields and body panels. As part sizes begin to exceed the order of 100gms, a grippers jaws are custom shaped to ensure a secure hold. As the durable mainstay of handling and assembly, these tools have changed little since the beginning of robotics three decades ago.Grippers, which a

    15、ct as simple pincers, have two or three unarticulated fingers, called “jaws”, which either pivot or remain parallel during open/close motions as illustrated in Figure 2. Well organized catalogs are available from manufacturers that guide the integrator or customer in matching various gripper compone

    16、nts (except naturally for the custom jaw shape) to the task and part parameters.Payload sizes range from grams for tiny pneumatic grippers to 100+ kilograms for massive hydraulic grippers. The power source is typically pneumatic or hydraulic with simple on/off valve control switching between full-op

    17、en and full-close states. The jaws typically move 1cm from full-open to full-close. These hands have two or three fingers, called “jaws”. The part of the jaw that contacts the target part is made of a removable and machine ably soft steel or aluminum, called a “soft jaw”.Based on the unique circumst

    18、ances, an expert tool designer determines the custom shapes to be machined into the rectangular soft-jaw pieces. Once machined to shape, the soft-jaw sets are attached to their respective gripper bodies and tested. This process can take any number of iterations and adjustments until the system works

    19、 properly. Tool designers repeat the entire process each time a new shape is introduced.As consumers demand a wider variety of product choices and ever more frequent product introductions, the need for flexible automation has never been greater. However, rather than make grippers more versatile, the

    20、 robotics industry over the past few years has followed the example of the automatic tool exchange technique used to exchange CNC-mill cutting tools.But applying the tool-changer model to serial-link robots is proving expensive and ineffective. Unlike the standardized off-the-shelf cutting tools use

    21、d by milling machines, a robot tool designer must customize the shape of every set of gripper jaws a time-consuming, expensive, and difficult-to-scope task. Although grippers may seem cheap at only US$500 each, the labor-intensive effort to shape the soft jaws may cost several times that. If you mul

    22、tiply that cost times a dozen grippers as in the example above and throw in a tool changer and tool-storage rack for an additional US$10,000, the real cost of the “few-hundred-dollar” gripper solution balloons to US$20,000 to US$60,000.To aggravate matters, unknowns in the customization process conf

    23、ound accurate cost projections. So the customer must commit a purchase order to the initial installation fee on a time and materials basis without guarantee of success or a cost ceiling. While priced at US$30,000, intelligent graspers are not cheap. However, one can “customize” and validate the proc

    24、ess in software in a matter of hours at the factory in a single day. If the system does not meet performance targets, then only a days labor is wasted. If the system succeeds, then there are not any hidden expenses following the original purchase order.Beyond cost, the physical weight of tool change

    25、r mechanisms, located at the extreme outer end of a serial-link robotic arm, limits the useful payload and dynamic response of the entire system. The additional length of the tool changer increases the critical distance between the wrist center and payload center, degrading kinematic flexibility, dy

    26、namic response, and safety.Description of the BarrettHand Flexibility and durability in a compact package The flexibility of the BarrettHand is based on the articulation of the eight joint axes identified in Figure 3. Only four brushless DC servomotors, shown in Figure 4, are needed to control all e

    27、ight joints, augmented by intelligent mechanical coupling. The resulting 1.18kg grasper is completely self-contained with only an 8mm diameter umbilical cable supplying DC power and establishing a two-way serial communication link to the main robot controller of the work cell. The graspers communica

    28、tions electronics, five microprocessors, sensors, signal processing electronics, electronic commutation, current amplifiers, and brushless servomotors are all packed neatly inside the palm body of the grasper.The BarrettHand has three articulated fingers and a palm as illustrated in Figure 5 which a

    29、ct in concert to trap the target object firmly and securely within a grasp consisting of seven coordinated contact vectors one from the palm plate and one from each link of each finger.Each of the BarrettHands three fingers is independently controlled by one of three servomotors as shown in Figure 6

    30、 Except for the spread action of fingers Fl and F2, which is driven by the fourth and last servomotor, the three fingers, Fl, F2, and F3, have inner and outer articulated links with identical mechanical structure.Each of the three finger motors must drive two joint axes. The torque is channeled to

    31、these joints through a patented, TorqueSwitch mechanism (Figure 7), whose function is optimized for maximum grasp security. When a fingertip, not the inner link, makes first contact with an object as illustrated in Figure 8, it simply reaches its required torque, locks both joints, switches off moto

    32、r currents, and awaits further instructions from the microprocessors inside the hand or a command arriving across the communications link.But when the inner link, as illustrated in Figure 9, makes first contact with an object for a secure grasp, the TorqueSwitch, reaches a preset threshold torque, l

    33、ocks that joint against the object with a shallow-pitch worm, and redirects all torque to the fingertip to make a second, enclosing contact against the object within milliseconds of the first contact. The sequence of contacts is so rapid that you cannot visualize the process without the aid of high-

    34、speed photography. After the grasper releases the object, it sets the TorqueSwitch threshold torque for each finger in anticipation of the next grasp by opening each finger against its mechanical stop with a controlled torque. The higher the opening torque, the higher the subsequent threshold torque

    35、 In this way, the grasper can accommodate a wide range of objects from delicate, to compliant, to heavy.The finger articulations, not available on conventional grippers, allow each digit to conform uniquely and securely to the shape of the object surface with two independent contact points per fing

    36、er. The position, velocity, acceleration, and even torque can all be processor controlled over the full range of 17,500 encoder positions. At maximum velocity and acceleration settings, each finger can travel full range in either direction in less than one second. The maximum force that can be activ

    37、ely produced is 2kg, measured at the tip of each finger. Once the grasp is secure, the links automatically lock in place allowing the motor currents to be switched off to conserve power until commanded to readjust or release their grasp.While the inner and outer finger-link motions curl anthropomorp

    38、hically, the spread motion of Figure 10 is distinctly non-anthropomorphic. The spread motion is closest in function to a primates opposable (thumb) finger, but instead of one opposable finger, the BarrettHand has twin, symmetrically opposable fingers centered on parallel joint axes rotating 180 degr

    39、ees around the entire palm to form a limitless variety of gripper-shapes and fixture functions. The spread can be controlled to any of 3,000 positions over its full range in either direction within 1/2 second. Unlike the mechanically lockable finger-curl motions, the spread motion is fully back driv

    40、able, allowing its servos to provide active stiffness control in addition to control over position, velocity, acceleration, and torque. By allowing the spread motion to be compliant while the fingers close around an object, the grasper seeks maximum grasp stability as the spread accommodates its pos

    41、ition, permitting the fingers to find their lowest energy states in the most concave surface features. Electronic and mechanical optimization Intelligent, dexterous control is key to the success of any programmable robot, whether it is an arm, automatically guided vehicle, or dexterous hand. While r

    42、obotic intelligence is usually associated with processor-driven motor control, many biological systems, including human hands, integrate some degree of specialized reflex control independent of explicit motor-control signals from the brain. In fact, the BarrettHand combines reflexive mechanical inte

    43、lligence and programmable microprocessor intelligence for a high degree of practical dexterity in real-world applications.By strict mathematical definition, dexterity requires independent, intelligent motor control over each and every articulated joint axis. For a robot to be dexterous, at least n i

    44、ndependent servomotors, and sometimes as many as n + 1 or 2n, are required to drive n joint axes. Unfortunately, servomotors constitute the bulkiest, costliest, and most complex components of any dexterous robotic hand. So, while the strict definition of dexterity may be mathematically elegant, it l

    45、eads to impractical designs for any real application.According to the definition, neither your hand nor the BarrettHand is dexterous. Naturally, their superior versatility challenges the definition itself. If the BarrettHand followed the strict definition for dexterity, it would require between eigh

    46、t and 16 motors, making it far too bulky, complex, and unreliable for any practical application outside the mathematical analysis of hand dexterity. But, by exploiting four intelligent, joint-coupling mechanisms, the almost-dexterous BarrettHand requires only four servomotors. In some instances refl

    47、ex control is even better than deliberate control. Two examples based on your own body illustrate this point. Suppose your hand accidentally touches a dangerously hot surface. It begins retracting itself instantly, relying on local reflex to override any ongoing cognitive commands. Without this refl

    48、ex behavior, your hand would burn while waiting for the sensations of pain to travel from your hand to your brain via relatively slow nerve fibers and then for your brain, through the same slow nerve fibers, to command your arm, wrist, and finger muscles to retract.As the second example, try to move

    49、 the outer joint of your index finger without moving the adjacent joint on the same finger. If you are like most people, you cannot move these joints independently because the design of your hand is optimized for grasping. Your muscles and tendons are as streamlined and lightweight as possible without forfeiting functionality.The design of the BarrettHand recognizes that intelligent control of functional dexterity requires the integration of microprocessor and mechanical intelligence


    注意事项

    本文(机械专业外文文献翻译@外文翻译巴雷特机械手爪可编程式可弯曲部分的搬运和组装.doc)为本站会员(飞猪)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!




    宁ICP备18001539号-1

    三一文库
    收起
    展开