圆锥曲线大题题型归纳.doc
《圆锥曲线大题题型归纳.doc》由会员分享,可在线阅读,更多相关《圆锥曲线大题题型归纳.doc(18页珍藏版)》请在三一文库上搜索。
1、精选优质文档-倾情为你奉上圆锥曲线大题题型归纳基本方法:1 待定系数法:求所设直线方程中的系数,求标准方程中的待定系数、等等;2 齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题;3 韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根;4 点差法:弦中点问题,端点坐标设而不求。也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式;5 距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题;基本思想:1“常规求值”问题需要找等式,“
2、求范围”问题需要找不等式;2“是否存在”问题当作存在去求,若不存在则计算时自然会无解;3证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关;4证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决;5有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;6大多数问题只要忠实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题例1、 已知F1,F2为椭圆+=1的两个焦点,P在椭圆上,且F1 PF2=60,则F1 PF2的
3、面积为多少?点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。变式1-1 已知分别是双曲线的左右焦点,是双曲线右支上的一点,且=120,求的面积。变式1-2 已知F1,F2为椭圆 (0b10)的左、右焦点,P是椭圆上一点(1)求|PF1|PF2|的最大值;(2)若F1PF2=60且F1PF2的面积为 ,求b的值题型二 过定点、定值问题例2、如图,抛物线S的顶点在原点O,焦点在x轴上,ABC三个顶点都在抛物线上,且ABC的重心为抛物线的焦点,若BC所在直线方程为4x+y-20=0,()求抛物线的方程;()是否存在定点M,使过M的动直线与抛物线S交于P、Q两点,且 ,证明你的结论处理
4、定点问题的方法:常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;也可先取参数的特殊值探求定点,然后给出证明。变式2-1 已知抛物线y2=2px(p0)的焦点为F,过F且斜率为 直线与抛物线在x轴上方的交点为M,过M作y轴的垂线,垂足为N,O为坐标原点,若四边形OFMN的面积为 (1)求抛物线的方程;(2)若P,Q是抛物线上异于原点O的两动点,且以线段PQ为直径的圆恒过原点O,求证:直线PQ过定点,并指出定点坐标例3、已知椭圆C: (ab0),过焦点垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形(I)求椭圆的方程;()过点Q(-1,0)的直线l交椭圆于A,B两点,交直线x=
5、4于点E, 判断+是否为定值,若是,计算出该定值;不是,说明理由点评:证明定值问题的方法:常把变动的元素用参数表示出来,然后证明计算结果与参数无关;也可先在特殊条件下求出定值,再给出一般的证明变式3-1 已知椭圆 (ab0)的离心率为焦距为2(1)求椭圆的方程;(2)过椭圆右焦点且垂直于x轴的直线交椭圆于P,Q两点,C,D为椭圆上位于直线PQ异侧的两个动点,满足CPQ=DPQ,求证:直线CD的斜率为定值,并求出此定值例4、过抛物线(0)的焦点F作任意一条直线分别交抛物线于A、B两点,如果(O为原点)的面积是S,求证:为定值。变式4-1 设椭圆C: (ab0)的一个顶点与抛物线C:x2=4y
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 题型 归纳
