外文翻译齿轮和齿轮传动.doc
《外文翻译齿轮和齿轮传动.doc》由会员分享,可在线阅读,更多相关《外文翻译齿轮和齿轮传动.doc(8页珍藏版)》请在三一文库上搜索。
1、Gears and gear driveGears are the most durable and rugged of all mechanical drives. They can transmit high power at efficiencies up to 98% and with long service lives. For this reason, gears rather than belts or chains are found in automotive transmissions and most heavy-duty machine drives. On the
2、other hand, gears are more expensive than other drives, especially if they are machined and not made from power metal or plastic. Gear cost increases sharply with demands for high precision and accuracy. So it is important to establish tolerance requirements appropriate for the application. Gears th
3、at transmit heavy loads or than operate at high speeds are not particularly expensive, but gears that must do both are costly. Silent gears also are expensive. Instrument and computer gears tend to be costly because speed or displacement ratios must be exact. At the other extreme, gears operating at
4、 low speed in exposed locations are normally termed no critical and are made to minimum quality standards. For tooth forms, size, and quality, industrial practice is to follow standards set up by the American Gear Manufactures Association (AGMA). Tooth form Standards published by AGMA establish gear
5、 proportions and tooth profiles. Tooth geometry is determined primarily by pitch, depth, and pressure angle. Pitch:Standards pitches are usually whole numbers when measured as diametral pitch P. Coarse-pitch gearing has teeth larger than 20 diametral pitch usually 0.5 to 19.99. Fine-pitch gearing us
6、ually has teeth of diametral pitch 20 to 200.Depth: Standardized in terms of pitch. Standard full-depth have working depth of 2/p. If the teeth have equal addenda(as in standard interchangeable gears) the addendum is 1/p. Stub teeth have a working depth usually 20% less than full-depth teeth. Full-d
7、epth teeth have a larger contract ratio than stub teeth. Gears with small numbers of teeth may have undercut so than they do not interfere with one another during engagement. Undercutting reduce active profile and weakens the tooth.Mating gears with long and short addendum have larger load-carrying
8、capacity than standard gears. The addendum of the smaller gear (pinion) is increased while that of larger gear is decreased, leaving the whole depth the same. This form is know as recess-action gearing.Pressure Angle: Standard angles are and . Earlier standards include a 14-pressure angle that is st
9、ill used. Pressure angle affects the force that tends to separate mating gears. High pressure angle decreases the contact ratio (ratio of the number of teeth in contact) but provides a tooth of higher capacity and allows gears to have fewer teeth without undercutting.Backlash: Shortest distances bet
10、ween the non-contacting surfaces of adjacent teeth . Gears are commonly specified according to AGMA Class Number, which is a code denoting important quality characteristics. Quality number denote tooth-element tolerances. The higher the number, the closer the tolerance. Number 8 to 16 apply to fine-
11、pitch gearing.Gears are heat-treated by case-hardening, through-hardening, nitriding, or precipitation hardening. In general, harder gears are stronger and last longer than soft ones. Thus, hardening is a device that cuts the weight and size of gears. Some processes, such as flame-hardening, improve
12、 service life but do not necessarily improve strength. Design checklistThe larger in a pair is called the gear, the smaller is called the pinion.Gear Ratio: The number of teeth in the gear divide by the number of teeth in the pinion. Also, ratio of the speed of the pinion to the speed of the gear. I
13、n reduction gears, the ratio of input to output speeds.Gear Efficiency: Ratio of output power to input power. (includes consideration of power losses in the gears, in bearings, and from windage and churning of lubricant.)Speed: In a given gear normally limited to some specific pitchline velocity. Sp
14、eed capabilities can be increased by improving accuracy of the gear teeth and by improving balance of the rotating parts.Power: Load and speed capacity is determined by gear dimensions and by type of gear. Helical and helical-type gears have the greatest capacity (to approximately 30,000 hp). Spiral
15、 bevel gear are normally limited to 5,000 hp, and worm gears are usually limited to about 750 hp.Special requirementsMatched-Set Gearing: In applications requiring extremely high accuracy, it may be necessary to match pinion and gear profiles and leads so that mismatch does not exceed the tolerance
16、on profile or lead for the intended application.Tooth Spacing: Some gears require high accuracy in the circular of teeth. Thus, specification of pitch may be required in addition to an accuracy class specification.Backlash: The AMGA standards recommend backlash ranges to provide proper running clear
17、ances for mating gears. An overly tight mesh may produce overload. However, zero backlash is required in some applications.Quiet Gears: To make gears as quit as possible, specify the finest pitch allowable for load conditions. (In some instances, however, pitch is coarsened to change mesh frequency
18、to produce a more pleasant, lower-pitch sound.) Use a low pressure angle. Use a modified profile to include root and tip relief. Allow enough backlash. Use high quality numbers. Specify a surface finish of 20 in. or better. Balance the gear set. Use a nonintegral ratio so that the same teeth do not
19、repeatedly engage if both gear and pinion are hardened steel. (If the gear is made of a soft material, an integral ratio allows the gear to cold-work and conform to the pinion, thereby promoting quiet operation.) Make sure critical are at least 20% apart from operating speeding or speed multiples an
20、d from frequency of tooth mesh.Multiple mesh gearMultiple mesh refers to move than one pair of gear operating in a train. Can be on parallel or nonparallel axes and on intersection or nonintersecting shafts. They permit higer speed ratios than are feasible with a single pair of gears .Series trains:
21、Overall ratio is input shaft speed divided by output speed ,also the product of individual ratios at each mesh ,except in planetary gears .Ratio is most easily found by dividing the product of numbers of teeth of driven gears by the product of numbers of teeth of driving gears.Speed increasers (with
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 外文 翻译 齿轮 传动
三一文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


WINDOWSSERVERDHCP类别实验.doc
WinkanCAPP三维工艺设计与管理系统.ppt
