新北师大九年级数学下册知识点总结.doc
《新北师大九年级数学下册知识点总结.doc》由会员分享,可在线阅读,更多相关《新北师大九年级数学下册知识点总结.doc(7页珍藏版)》请在三一文库上搜索。
1、 . 九年级数学下册知识点归纳第一章 直角三角形边的关系一锐角三角函数1.正切:定义:在RtABC中,锐角A的对边与邻边的比叫做A的正切,记作tanA,即;tanA是一个完整的符号,它表示A的正切,记号里习惯省去角的符号;tanA没有单位,它表示一个比值,即直角三角形中A的对边与邻边的比;tanA不表示tan乘以A;初中阶段,我们只学习直角三角形中,A是锐角的正切;tanA的值越大,梯子越陡,A越大;A越大,梯子越陡,tanA的值越大。2.正弦:定义:在RtABC中,锐角A的对边与斜边的比叫做A的正弦,记作sinA,即;3.余弦:定义:在RtABC中,锐角A的邻边与斜边的比叫做A的余弦,记作
2、cosA,即;锐角A的正弦、余弦和正切都是A的三角函数当锐角A变化时,相应的正弦、余弦和正切之也随之变化。图2hi=h:llABC图1二特殊角的三角函数值30 45 60 sincostan1三三角函数的计算1.仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角2.俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角3.规律:利用特殊角的三角函数值表,可以看出,当角度在090间变化时,正弦值、正切值随着角度的增大而增大;余弦值随着角度的增大而减小。0sin1,0cos1。4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度 。用字母i表示,即5.方位角:从某点的
3、指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA、OB、OC的方位角分别为45、135、225。6.方向角:指北或指南方向线与目标方向线所成的小于90的水平角,叫做方向角。如图4,OA、OB、OC、OD的方向角分别是;北偏东30,南偏东45、南偏西为60,北偏西60。图4图37.同角的三角函数间的关系:互余关系sinA=cos、cosA=sin平方关系:商数关系:8.解直角三角形:在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形须知一条边。9.直角三角形变焦关系:在ABC中,C为直角,A、B、
4、C所对的边分别为a、b、c,则有三边之间的关系:a2+b2=c2;两锐角的关系:AB=90;边与角之间的关系:面积公式:; 直角三角形的内切圆半径 直角三角形的外接圆半径10.三角函数的应用 11.利用三角函数测高 第二章 二次函数1.概念:一般地,若两个变量x,y之间对应关系可以表示成的形式,则称y是x的二次函数。自变量x的取值范围是全体实数。在写二次函数的关系式时,一定要寻找两个变量之间的等量关系,列出相应的函数关系式,并确定自变量的取值范围。2. 图像性质:二次函数yax2的图象:是一条顶点在原点且关于y轴对称的抛物线。是二次函数的特例,此时常数b=c=0.2抛物线的描述:开口方向、对称
5、性、y随x的变化情况、抛物线的最高或最低点、抛物线与x轴的交点。函数的取值范围是全体实数;抛物线的顶点在,对称轴是y轴。当a0时,抛物线开口向上,并且向上方无限伸展。当a0时,抛物线开口向下,并且向下方无限伸展。函数的增减性:A、当a0时B、当a0时当a越大,抛物线开口越小;当a越小,抛物线的开口越大。最大值或最小值:当a0,且x0时函数有最小值,最小值是0;当a0,且x0时函数有最大值,最大值是0。3二次函数的图象:是一条顶点在y轴上且与y轴对称的抛物线,二次函数的图象中,a的符号决定抛物线的开口方向,|a|决定抛物线的开口程度大小,c决定抛物线的顶点位置,即抛物线位置的高低。4二次函数的图
6、象:是以直线为对称轴,顶点坐标为,的抛物线。开口方向和大小由a来决定|a|的越大,抛物线的开口程度越小,越靠近对称轴y轴,y随x增长或下降速度越快;|a|的越小,抛物线的开口程度越大,越远离对称轴y轴,y随x增长或下降速度越慢。5二次函数的图象与yax2的图象的关系:的图象可以由yax2的图象平移得到:利用顶点坐标6二次函数的图象:是以直线x=h为对称轴,顶点坐标为h,k的抛物线。开口方向和大小由a来决定7二次函数的性质:二次函数配方成则抛物线的对称轴:x=顶点坐标:,增减性:若a0,当x时,y随x的增大而增大。若a0,则当x时,y随x的增大而减小。最值:若a0,则当x=时,;若a0,则当x=
7、时,3.确定二次函数的表达式:待定系数法1一般式:2顶点式:2交点式:y=a4.二次函数的应用: 几何方面应用题5.二次函数与一元二次方程1二次函数的图象与x轴的两个交点的横坐标x1,x2是对应一二次方程的两个实数根2抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:0 抛物线与x轴有2个交点;=0 抛物线与x轴有1个交点;0 抛物线与x轴有0个交点无交点;3当0时,设抛物线与x轴的两个交点为A、B,则这两个点之间的距离:化简后即为: 这就是抛物线与x轴的两交点之间的距离公式。第三章 圆1.圆的定义:描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 九年级 数学 下册 知识点 总结
