中考数学压轴系列二次函数含参问题共69页.docx
《中考数学压轴系列二次函数含参问题共69页.docx》由会员分享,可在线阅读,更多相关《中考数学压轴系列二次函数含参问题共69页.docx(70页珍藏版)》请在三一文库上搜索。
1、精选优质文档-倾情为你奉上二次函数含参问题1(温州)如图,抛物线y=x2mx3(m0)交y轴于点C,CAy轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BEy轴,交y轴于点E,交AO的延长线于点D,BE=2AC(1)用含m的代数式表示BE的长(2)当m=时,判断点D是否落在抛物线上,并说明理由(3)若AGy轴,交OB于点F,交BD于点G若DOE与BGF的面积相等,求m的值连结AE,交OB于点M,若AMF与BGF的面积相等,则m的值是 2(广州)已知抛物线y=mx2+(12m)x+13m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点
2、P的坐标;(3)当m8时,由(2)求出的点P和点A,B构成的ABP的面积是否有最值?若有,求出该最值及相对应的m值3(福州)已知,抛物线y=ax2+bx+c(a0)经过原点,顶点为A(h,k)(h0)(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2x上,且2h1时,求a的取值范围4(吉林)如图1,在平面直角坐标系中,点B在x轴正半轴上,OB的长度为2m,以OB为边向上作等边三角形AOB,抛物线l:y=ax2+bx+c经过点O,A,B三点(1)当m=2时,a= ,当m=3时,a= ;(2)根据(1)中的结果
3、猜想a与m的关系,并证明你的结论;(3)如图2,在图1的基础上,作x轴的平行线交抛物线l于P、Q两点,PQ的长度为2n,当APQ为等腰直角三角形时,a和n的关系式为 ;(4)利用(2)(3)中的结论,求AOB与APQ的面积比5(成都)如图,在平面直角坐标系xOy中,抛物线y=ax22ax3a(a0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若ACE的面积的最大值为,求a的值;(3)设P是抛
4、物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由6(润州区二模)如图,抛物线y=x22mx3m2(m为常数,m0),与x轴相交于点A、B,与y轴相交于点C,(1)用m的代数式表示:点C坐标为 ,AB的长度为 ;(2)过点C作CDx轴,交抛物线于点D,将ACD沿x轴翻折得到AEM,延长AM交抛物线于点N,求AMAN的值;若AB=4,直线x=t交线段AN于点P,交抛物线于点Q,连接AQ、NQ,是否存在实数t,使AQN的面积最大?如果存在,求t的值;如果不存在,请说明理由7(苏州)如图,已知二次函数y=x2+(1m)xm(其中
5、0m1)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴为直线l设P为对称轴l上的点,连接PA、PC,PA=PC(1)ABC的度数为 ;(2)求P点坐标(用含m的代数式表示);(3)在坐标轴上是否存在着点Q(与原点O不重合),使得以Q、B、C为顶点的三角形与PAC相似,且线段PQ的长度最小?如果存在,求出所有满足条件的点Q的坐标;如果不存在,请说明理由8(广元)如图,已知抛物线y=(x+2)(xm)(m0)与x轴相交于点A、B,与y轴相交于点C,且点A在点B的左侧(1)若抛物线过点G(2,2),求实数m的值;(2)在(1)的条件下,解答下列问题:求出ABC的面积;在抛物线
6、的对称轴上找一点H,使AH+CH最小,并求出点H的坐标;(3)在第四象限内,抛物线上是否存在点M,使得以点A、B、M为顶点的三角形与ACB相似?若存在,求m的值;若不存在,请说明理由9(南通)已知抛物线y=x22mx+m2+m1(m是常数)的顶点为P,直线l:y=x1(1)求证:点P在直线l上;(2)当m=3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,ACM=PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值10(成都)如图,已知抛物线y=k8(x+2)(
7、x4)(k为常数,且k0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=33x+b与抛物线的另一交点为D(1)若点D的横坐标为5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?11(南宁)在平面直角坐标系中,抛物线y=x2+(k1)xk与直线y=kx+1交于A,B两点,点A在点B的
8、左侧(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k1)xk(k0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得OQC=90?若存在,请求出此时k的值;若不存在,请说明理由12(乐山)如图,抛物线y=x22mx(m0)与x轴的另一个交点为A,过P(1,m)作PMx轴于点M,交抛物线于点B点B关于抛物线对称轴的对称点为C(1)若m=2,求点A和点C的坐标;(2)令m1,连接CA,若ACP为直角三角形,求m的
9、值;(3)在坐标轴上是否存在点E,使得PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由13(邵阳)在平面直角坐标系xOy中,抛物线y=x2(m+n)x+mn(mn)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C(1)若m=2,n=1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,1),求ACB的大小;(3)若m=2,ABC是等腰三角形,求n的值14(莆田)如图,抛物线C1:y=(x+m)2(m为常数,m0),平移抛物线y=x2,使其顶点D在抛物线C1位于y轴右侧的图象上,得到抛物线C2抛物线C2交x轴于A,B两点(
10、点A在点B的左侧),交y轴于点C,设点D的横坐标为a(1)如图1,若m=12当OC=2时,求抛物线C2的解析式;是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;(2)如图2,当OB=23m(0m3)时,请直接写出到ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示)15(大连)如图,抛物线y=a(xm)2+2m2(其中m1)与其对称轴l相交于点P,与y轴相交于点A(0,m1)连接并延长PA、PO,与x轴、抛物线分别相交于点B、C,连接BC点C关于直线l的对称点为C,连接PC,即有PC=PC将PBC绕点
11、P逆时针旋转,使点C与点C重合,得到PBC(1)该抛物线的解析式为 (用含m的式子表示);(2)求证:BCy轴;(3)若点B恰好落在线段BC上,求此时m的值参考答案1.解:(1)C(0,3),ACOC,点A纵坐标为3,y=3时,3=x2mx3,解得x=0或m,点A坐标(m,3),AC=m,BE=2AC=2m(2)m=,点A坐标(,3),直线OA为y=x,抛物线解析式为y=x2x3,点B坐标(2,3),点D纵坐标为3,对于函数y=x,当y=3时,x=,点D坐标(,3)对于函数y=x2x3,x=时,y=3,点D在落在抛物线上(3)ACE=CEG=EGA=90,四边形ECAG是矩形,EG=AC=BG
12、FGOE,OF=FB,EG=BG,EO=2FG,DEEO=GBGF,BG=2DE,DEAC,=,点B坐标(2m,2m23),OC=2OE,3=2(2m23),m0,m=A(m,3),B(2m,2m23),E(0,2m23),直线AE解析式为y=2mx+2m23,直线OB解析式为y=x,由消去y得到2mx+2m23=x,解得x=,点M横坐标为,AMF的面积=BFG的面积,(+3)(m)=m(2m23),整理得到:2m49m2=0,m0,m=故答案为2. (1)解:当m=0时,函数为一次函数,不符合题意,舍去;当m0时,抛物线y=mx2+(12m)x+13m与x轴相交于不同的两点A、B,=(12
13、m)24m(13m)=(14m)20,14m0,m,m的取值范围为m0且m;(2)证明:抛物线y=mx2+(12m)x+13m,y=m(x22x3)+x+1,抛物线过定点说明在这一点y与m无关,显然当x22x3=0时,y与m无关,解得:x=3或x=1,当x=3时,y=4,定点坐标为(3,4);当x=1时,y=0,定点坐标为(1,0),P不在坐标轴上,P(3,4);(3)解:|AB|=|xAxB|=|=|4|,m8,4,40,0|4|,|AB|最大时,|=,解得:m=8,或m=(舍去),当m=8时,|AB|有最大值,此时ABP的面积最大,没有最小值,则面积最大为:|AB|yP=4=3. 解:(1
14、顶点为A(1,2),设抛物线为y=a(x1)2+2,抛物线经过原点,0=a(01)2+2,a=2,抛物线解析式为y=2x2+4x(2)抛物线经过原点,设抛物线为y=ax2+bx,h=,b=2ah,y=ax22ahx,顶点A(h,k),k=ah22ah2=ah2,抛物线y=tx2也经过A(h,k),k=th2,th2=ah22ah2,t=a,(3)点A在抛物线y=x2x上,k=h2h,又k=ah22ah2,h=,2h1,21,当1+a0时,即a1时,解得a0,当1+a0时,即a1时,解得a,综上所述,a的取值范围a0或a4.解:(1)如图1,点B在x轴正半轴上,OB的长度为2m,B(2m,0)
15、以OB为边向上作等边三角形AOB,AM=m,OM=m,A(m,m),抛物线l:y=ax2+bx+c经过点O,A,B三点,当m=2时,a=,当m=3时,a=,故答案为:,;(2)a=理由:如图1,点B在x轴正半轴上,OB的长度为2m,B(2m,0),以OB为边向上作等边三角形AOB,AM=m,OM=m,A(m,m),抛物线l:y=ax2+bx+c经过点O,A,B三点,a=,(3)如图2,APQ为等腰直角三角形,PQ的长度为2n,设A(e,d+n),P(en,d),Q(e+n,d),P,Q,A,O在抛物线l:y=ax2+bx+c上,化简得,2aean+b=1,化简得,2aeanb=1,+化简得,
16、an=1,a=故答案为a=,(4)OB的长度为2m,AM=m,SAOB=OBAM=2mm=m2,由(3)有,AN=nPQ的长度为2n,SAPQ=PQAN=2nn=n2,由(2)(3)有,a=,a=,=,m=n,=,AOB与APQ的面积比为3:15. 解:(1)令y=0,则ax22ax3a=0,解得x1=1,x2=3点A在点B的左侧,A(1,0),如图1,作DFx轴于F,DFOC,=,CD=4AC,=4,OA=1,OF=4,D点的横坐标为4,代入y=ax22ax3a得,y=5a,D(4,5a),把A、D坐标代入y=kx+b得,解得,直线l的函数表达式为y=ax+a(2)如图1,过点E作ENy轴于
17、点N设点E(m,a(m+1)(m3),yAE=k1x+b1,则,解得:,yAE=a(m3)x+a(m3),M(0,a(m3)MC=a(m3)a,NE=mSACE=SACM+SCEM=a(m3)a+a(m3)am=(m+1)a(m3)a=(m)2a,有最大值a=,a=;(3)令ax22ax3a=ax+a,即ax23ax4a=0,解得x1=1,x2=4,D(4,5a),y=ax22ax3a,抛物线的对称轴为x=1,设P1(1,m),若AD是矩形的一条边,由AQDP知xDxP=xAxQ,可知Q点横坐标为4,将x=4带入抛物线方程得Q(4,21a),m=yD+yQ=21a+5a=26a,则P(1,26
18、a),四边形ADPQ为矩形,ADP=90,AD2+PD2=AP2,AD2=4(1)2+(5a)2=52+(5a)2,PD2=4(1)2+(5a)2=52+(5a)2,4(1)2+(5a)2+(14)2+(26a5a)2=(11)2+(26a)2,即a2=,a0,a=,P1(1,)若AD是矩形的一条对角线,则线段AD的中点坐标为(,),Q(2,3a),m=5a(3a)=8a,则P(1,8a),四边形ADPQ为矩形,APD=90,AP2+PD2=AD2,AP2=1(1)2+(8a)2=22+(8a)2,PD2=(41)2+(8a5a)2=32+(3a)2,AD2=4(1)2+(5a)2=52+(5
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 压轴 系列 二次 函数 问题 69
