极坐标计算二重积分.ppt
《极坐标计算二重积分.ppt》由会员分享,可在线阅读,更多相关《极坐标计算二重积分.ppt(18页珍藏版)》请在三一文库上搜索。
1、极坐标系下极坐标系下二重二重积分分的计算的计算 二、二重积分的极坐标转化及计算二、二重积分的极坐标转化及计算一、极坐标与直角坐标系的关系一、极坐标与直角坐标系的关系什么是极坐标什么是极坐标?在平面内取一个定点在平面内取一个定点O O,引一条射线引一条射线OX,这样就建立了一个这样就建立了一个极坐标系极坐标系。叫做叫做极点极点。叫做叫做极轴极轴,对对于平面内任一点于平面内任一点M,记记|OM|=r,XOr M(r,)就叫做点就叫做点 M 的极坐的极坐标标。XOM=,平面上任一点平面上任一点(r,)一、极坐标与直角坐标系的关系一、极坐标与直角坐标系的关系两坐标系中变量间关系:两坐标系中变量间关系:
2、设积分区域设积分区域 D为平面有界区域为平面有界区域,并且从原点发出的并且从原点发出的射线与射线与D的边界线交点不多于两个的边界线交点不多于两个,则区域则区域D被分割情形被分割情形见下图见下图.二重积分中被积函数二重积分中被积函数求求极坐标下的积分元素极坐标下的积分元素的的表示方法。表示方法。二、二重积分的极坐标转化及计算二、二重积分的极坐标转化及计算1、二重积分的极坐标转化二重积分的极坐标转化图中分割的其中一小块的面积为图中分割的其中一小块的面积为略去高阶无穷小略去高阶无穷小 则有则有 r r ,故故 d =rdrd.于是于是,二重积分二重积分 二、极坐标系下二重积分化为累次积分的的三种情形
3、1、区域特征如图、区域特征如图D:2、区域特征如图、区域特征如图D:极坐标系下区域的极坐标系下区域的面积面积3、区域特征如图、区域特征如图例例1 将将化为在极坐标系下的二次积分。化为在极坐标系下的二次积分。1)4)2)3)1)解:解:在在极坐标系中,闭区域极坐标系中,闭区域D 可表示为可表示为2)在在极坐标系中,闭区域极坐标系中,闭区域D 可表示为可表示为3)在在极坐标系中,闭区域极坐标系中,闭区域D 可表示为可表示为4)在在极坐标系中,闭区域极坐标系中,闭区域D 可表示为可表示为 例例2 求求 D:x2+y2 R2 (R0).解解 在极坐标下在极坐标下D:0 r R,0 2.利用极坐标计算二重积分利用极坐标计算二重积分 例例3 求求 D:x2+y2 2ax (a 0).解解 积分区域积分区域D如图如图,在极坐标下在极坐标下D:0 r 2acos ,例例4 求求 (a0).解解 积分区域积分区域D见图见图,采用极坐标计算采用极坐标计算,原式原式=y=xx2+y2=2ay 例例5 求求 的值的值.解解 考虑考虑区域区域D:0 x +,0 y +,记记 故故小结小结 掌握极坐标系下掌握极坐标系下二重积分的计算方法二重积分的计算方法,化二重化二重积分为极坐标下的二次积分积分为极坐标下的二次积分,并注意运算技巧并注意运算技巧.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 坐标 计算 二重积分
