外文翻译关于新型并联雕刻机的研究及其关键技术优秀.doc
《外文翻译关于新型并联雕刻机的研究及其关键技术优秀.doc》由会员分享,可在线阅读,更多相关《外文翻译关于新型并联雕刻机的研究及其关键技术优秀.doc(38页珍藏版)》请在三一文库上搜索。
1、英文原文Research on a Novel Parallel Engraving Machine and its Key TechnologiesAbstract: In order to compensate the disadvantages of conventional engraving machine and exert the advantages of parallel mechanism, a novel parallel engraving machine is presented and some key technologies are studied in thi
2、s paper. Mechanism performances are analyzed in terms of the first and the second order influence coefficient matrix firstly. So the sizes of mechanism, which are better for all the performance indices of both kinematics and dynamics, can be confirmed and the restriction due to considering only the
3、first order influence coefficient matrix in the past is broken through. Therefore, the theory basis for designing the mechanism size of novel engraving machine with better performances is provided. In addition, method for tool path planning and control technology for engraving force is also studied
4、in the paper. The proposed algorithm for tool path planning on curved surface can be applied to arbitrary spacial curved surface in theory, control technology for engraving force based on fuzzy neural network (FNN) has well adaptability to the changing environment. Research on teleoperation for para
5、llel engraving machine based on B / S architecture resolves the key problems such as control mode, sharing mechanism for multiuser, real-time control for engraving job and real-time transmission for video information. Simulation results further show the feasibility and validity of the proposed metho
6、ds. Keywords: parallel mechanism, engraving machine, influence coefficient, performance indices, tool path planning, force control, fuzzy neural network, teleoperation1 IntroductionConventional computer engraving machine has played an important role in industries such as machinery machining, printin
7、g and dyeing and entertainment, but it has the inherent disadvantages such as cutting tool can be fed only along the fixed guideway, lower degree-of-freedom (DOF) of cutting tool, lower flexibility and mobility for machining etc. Parallel mechanism has the merits such as high mechanical stiffness, h
8、igh load capacity, high precision, good dynamic performance etc (Zhen, H.; Ling-fu, K. & Yue-fa, F., 1997). According to the characteristics of parallel mechanism, it has been a hot research topic to apply parallel mechanism to the domain of future machining. By applying parallel mechanism to engrav
9、ing domain, its inherent advantages can be fully exerted and the disadvantages of conventional engraving machine can be overcome or compensated. But as the special structure of parallel mechanism, the related theory and technology during its engraving is very different from that of conventional engr
10、aving machine, and it is a undeveloped research topic by now. In addition, with the development of computer network technology, the new concept and method such as network machining and manufacturing has become hot research topic (GQ, Huang & K.L, Mak., 2001; Taylor, K. & Dalton, B., 2000; Ying-xue,
11、Y. & Yong, L., 1999). A novel parallel engraving machine with six-axis linkage is proposed in this paper, which uses the 6-PUS parallel mechanism with 6-DOF as the prototype, and some key technologies such as size design, tool path planning, engraving force control and teleoperation are studied on t
12、his basis.2. Confirming of mechanism type and engraving machines size2.1 Selection of mechanism and coordinate systemThe selection of mechanism type is the first step for designing novel engraving machine, the following reasons make us select the 6-PUS parallel mechanism for designing our engraving
13、machine. Comparing with traditional mechanism, 6-PUS parallel mechanism uses base platform, three uprights layout and high rigidity framework structure and has the merits such as high modularization, high accuracy and low cost. Itsmodel is shown in Fig.1.Fig. 1. The model of 6-PUS parallel mechanism
14、As shown in Fig.1, 6-PUS parallel mechanism consists of base platform, dynamic platform and 6 branch chains with same structure, every branch joins with base platform through prismatic pairs (P), slider of prismatic pairs joins with up end of the fixed length link through universal joint (U), down e
15、nd of the fixed length link joins with dynamic platform through sphere hinge (S), so it is called 6-PUS parallel mechanism. The coordinate system of 6-PUS parallel engraving mechanism is shown in Fig. 2. In Fig.2, the geometry centers of base platform and dynamic platform plane are supposed as OB an
16、d op respectively. In every branch, the centers of prismatic pairs, universal joint and sphere hinge are marked with Ai, Bi, and Ci (i = 1,2, ., 6) respectively. Coordinate system OB-XBYBZB is fixed on base platform, taking B as briefly. The origin of B lies on geometry center of base platforms up p
17、lane, axis ZB is vertical with base platform and directs to up, axis YB directs to angle bisector of the first and second branch lead screw center line, and axis XB can be determined with right-hand rule. Supposing the coordinate system set on dynamic platform is op-xpypzp, taking P as briefly, its
18、origin lies on geometry center of dynamic platform, the initial state of dynamic platform system is consistent with that of base platform system completely. Supposing the coordinate of op is (0,0, Z) in B, this configuration without relative rotation to every axis is the initial configuration of thi
19、s mechanism, and Z changing with mechanisms size. On the basis of coordinate system mentioned, we use influence coefficient theory and the actual parameters of this mechanism to calculate the first and the second order influence coefficient matrix of every branch under different configuration. Then,
20、 we can get the first and the second order integrated influence coefficient matrix H of the whole mechanism. 和The significance and detailed solution process for influence coefficient matrix is omitted here, for more information please refer (Zhen, H.; Ling-fu, K. & Yue-fa, F., 1997).Fig. 2. Coordina
21、te system of 6-PUS parallel engraving mechanism2.2 Mechanism performance analysis based on influence coefficient matrix The performance of engraving machine will change with its size. To find out the better size for all the performance indices of both kinematics and dynamics, we obtain a group of me
22、chanisms by changing its parameters. These mechanisms length of fixed length links (L) range between 45cm and 55cm (step is 1cm), radius of dynamic platform (R) range between 10cm and 20cm (Step is 1cm). Other parameters of the mechanism is unchanging, so we get 121 mechanisms totally. Taking these
23、mechanisms as research object, we confirm the sample point for every mechanism in its workspace with algorithm PerformanceAnalysis, then calculate the first and the second order influence coefficient matrix in every point. Furthermore, calculate all the performance indices in every sample point and
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 外文 翻译 关于 新型 并联 雕刻 研究 及其 关键技术 优秀
