小学数学应用题21种类型总结附例题解题思路.doc
《小学数学应用题21种类型总结附例题解题思路.doc》由会员分享,可在线阅读,更多相关《小学数学应用题21种类型总结附例题解题思路.doc(49页珍藏版)》请在三一文库上搜索。
1、小学数学应用题21种类型总结(附例题、解题思路)小学数学应用题21种类型总结(附例题、解题思路)1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。【数量关系】总量份数=1份数量1份数量所占份数=所求几份的数量另一总量(总量份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。例1买5支铅笔要0.6元钱,买同样的铅笔xx支,需要多少钱?解(1)买1支铅笔多少钱?0.65=0.12(元)(2)买xx支铅笔需要多少钱?0.12xx=1.92(元)列成综合算式0.65xx=0.12xx=1.92(元)答
2、需要1.92元。例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?9033=10(公顷)(2)5台拖拉机6天耕地多少公顷?1056=300(公顷)列成综合算式903356=1030=300(公顷)答:5台拖拉机6天耕地300公顷。例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?10054=5(吨)(2)7辆汽车1次能运多少吨钢材?57=35(吨)(3)105吨钢材7辆汽车需要运几次?10535=3(次)列成综合算式105(100547)=3(次)答:需要运3次
3、2、归总问题【含义】解题时,常常先找出总数量,然后再根据其它条件算出所求的问题,叫归总问题。所谓总数量是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。【数量关系】1份数量份数=总量总量1份数量=份数总量另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。例1服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米?3.2791=2531.2(米)(2)现在可以做多少套?2531.22.8=904(套)列成综合算式3.27912.8=904(套)答:
4、现在可以做904套。例2小华每天读24页书,12天读完了红岩一书。小明每天读36页书,几天可以读完红岩?解(1)红岩这本书总共多少页?2412=288(页)(2)小明几天可以读完红岩?28836=8(天)列成综合算式241236=8(天)答:小明8天可以读完红岩。例3食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?解(1)这批蔬菜共有多少千克?5030=xx00(千克)(2)这批蔬菜可以吃多少天?xx00(50+10)=25(天)列成综合算式5030(50+10)=xx0060=25(天)答:这批蔬菜可以吃2
5、5天。3、和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。【数量关系】大数=(和+差)2小数=(和-差)2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。例1甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)2=52(人)乙班人数=(98-6)2=46(人)答:甲班有52人,乙班有46人。例2长方形的长和宽之和为xx厘米,长比宽多2厘米,求长方形的面积。解长=(xx+2)2=10(厘米)宽=(xx-2)2=8(厘米)长方形的面积=108=80(平方厘米)答:长方形的面积为80平方厘米。例3有甲乙丙三袋化
6、肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。解甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。由此可知甲袋化肥重量=(22+2)2=12(千克)丙袋化肥重量=(22-2)2=10(千克)乙袋化肥重量=32-12=20(千克)答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。例4甲乙两车原来共装苹果97筐,从甲车取下xx筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?解从甲车取下xx筐放到乙车上,结果甲车比乙车还多3筐,这说明甲车是大数,乙车是小数,甲与乙的差是(xx2+3
7、),甲与乙的和是97,因此甲车筐数=(97+xx2+3)2=64(筐)乙车筐数=97-64=33(筐)答:甲车原来装苹果64筐,乙车原来装苹果33筐。4、和倍问题【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。【数量关系】总和(几倍+1)=较小的数总和-较小的数=较大的数较小的数几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。例1果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解(1)杏树有多少棵?248(3+1)=62(棵)(2)桃树有多少棵?623=xx6(棵)答
8、杏树有62棵,桃树有xx6棵。例2东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?解(1)西库存粮数=480(1.4+1)=200(吨)(2)东库存粮数=480-200=280(吨)答:东库存粮280吨,西库存粮200吨。例3甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?解每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,那么,几天以后甲站
9、的车辆数减少为(52+32)(2+1)=28(辆)所求天数为(52-28)(28-24)=6(天)答:6天以后乙站车辆数是甲站的2倍。例4甲乙丙三数之和是xx0,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?解乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;这时(xx0+4-6)就相当于(1+2+3)倍。那么,甲数=(xx0+4-6)(1+2+3)=28乙数=282-4=52丙数=283+6=90答:甲数是28,乙数是52,丙数是90。5、差倍问题【含义】已知两个数的差及
10、大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。【数量关系】两个数的差(几倍-1)=较小的数较小的数几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。例1果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵?解(1)杏树有多少棵?124(3-1)=62(棵)(2)桃树有多少棵?623=xx6(棵)答:果园里杏树是62棵,桃树是xx6棵。例2爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?解(1)儿子年龄=27(4-1)=9(岁)(2)爸爸年龄=94=36(岁)答:父
11、子二人今年的年龄分别是36岁和9岁。例3商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?解如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,因此上月盈利=(30-12)(2-1)=xx(万元)本月盈利=xx+30=48(万元)答:上月盈利是xx万元,本月盈利是48万元。例4粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?解由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。把几天后剩下的小麦看作1倍量,则几天后
12、剩下的玉米就是3倍量,那么,(138-94)就相当于(3-1)倍,因此剩下的小麦数量=(138-94)(3-1)=22(吨)运出的小麦数量=94-22=72(吨)运粮的天数=729=8(天)答:8天以后剩下的玉米是小麦的3倍。6、倍比问题【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。【数量关系】总量一个数量=倍数另一个数量倍数=另一总量【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。例1100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?解(1)3700千克是100千克的多少倍?
13、3700100=37(倍)(2)可以榨油多少千克?4037=xx80(千克)列成综合算式40(3700100)=xx80(千克)答:可以榨油xx80千克。例2今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?解(1)48000名是300名的多少倍?48000300=xx0(倍)(2)共植树多少棵?400xx0=64000(棵)列成综合算式400(48000300)=64000(棵)答:全县48000名师生共植树64000棵。例3凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县xx000亩果
14、园共收入多少元?解(1)800亩是4亩的几倍?8004=200(倍)(2)800亩收入多少元?11111200=2222200(元)(3)xx000亩是800亩的几倍?xx000800=20(倍)(4)xx000亩收入多少元?222220020=44444000(元)答:全乡800亩果园共收入2222200元,全县xx000亩果园共收入44444000元。7、相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。【数量关系】相遇时间=总路程(甲速+乙速)总路程=(甲速+乙速)相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。例1
15、南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解392(28+21)=8(小时)答:经过8小时两船相遇。例2小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解第二次相遇可以理解为二人跑了两圈。因此总路程为4002相遇时间=(4002)(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间。例3甲乙二人同时从两地骑自行车相向而行,甲每小时行xx千米,乙每小时行13千米,两人在距中点
16、3千米处相遇,求两地的距离。解两人在距中点3千米处相遇是正确理解本题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(32)千米,因此,相遇时间=(32)(xx-13)=3(小时)两地距离=(xx+13)3=84(千米)答:两地距离是84千米。8、追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。【数量关系】追及时间=追及路程(快速-慢速)追及路程=(快速-慢
17、速)追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。例1好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解(1)劣马先走12天能走多少千米?7512=900(千米)(2)好马几天追上劣马?900(120-75)=20(天)列成综合算式7512(120-75)=90045=20(天)答:好马20天能追上劣马。例2小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。解小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)
18、米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用40(500200)秒,所以小亮的速度是(500-200)40(500200)=300100=3(米)答:小亮的速度是每秒3米。例3我人民解放军追击一股逃窜的敌人,敌人在下午xx点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?解敌人逃跑时间与解放军追击时间的时差是(22-xx)小时,这段时间敌人逃跑的路程是10(22-6)千米,甲乙两地相距60千米。由此推知追及时间=10(22-
19、6)+60(30-10)=22020=11(小时)答:解放军在11小时后可以追上敌人。例4一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点xx千米处相遇,求甲乙两站的距离。解这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(xx2)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为xx2(48-40)=4(小时)所以两站间的距离为(48+40)4=352(千米)列成综合算式(48+40)xx2(48-40)=884=352(千米)答:甲乙两站的距离是352千米。9、植树问题【含义】按相等的距离植树,在距离、棵距、
20、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。【数量关系】线形植树棵数=距离棵距+1环形植树棵数=距离棵距方形植树棵数=距离棵距-4三角形植树棵数=距离棵距-3面积植树棵数=面积(棵距行距)【解题思路和方法】先弄清楚植树问题的类型,然后可以利用公式。例1一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?解1362+1=68+1=69(棵)答:一共要栽69棵垂柳。例2一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?解4004=100(棵)答:一共能栽100棵白杨树。例3一个正方形的运动场,每边长220米,每隔8米安装一个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 数学 应用题 21 种类 总结 例题 解题 思路
