机械原理讲义DOC75页.doc
《机械原理讲义DOC75页.doc》由会员分享,可在线阅读,更多相关《机械原理讲义DOC75页.doc(79页珍藏版)》请在三一文库上搜索。
1、编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第79页 共79页绪 论一、研究对象1、机械:机器和机构的总称机器(三个特征):人为的实物组合(不是天然形成的);各运动单元具有确定的相对;必须能作有用功,完成物流、信息的传递及能量的转换。机器的组成:原动机、工作机、传动部分、自动控制工作机机构:有两特征。很显然,机器和机构最明显的区别是:机器能作有用功,而机构不能,机构仅能实现预期的机械运动。两者之间也有联系,机器是由几个机构组成的系统,最简单的机器只有一个机构。2、概念构件:运动单元体零件:制造单元体 构件可由一个或几个零件组成。机架:机构中相对不动的构件原动件:驱动力(或
2、力矩)所作用的构件。输入构件从动件:随着原动构件的运动而运动的构件。输出构件机构:能实现预期的机械运动的各构件(包括机架)的基本组合体称为机构。二、研究内容:1、机构的结构和运动学:机械的组成;机构运动的可能性和确定性;分析运动规律。2、机构和机器动力学:力运动的关系F=ma 功能3、要求:解决二类问题:分析:结构分析,运动分析,动力分析综合(设计):运动要求,功能要求。新的机器。第一章 平面机构的结构分析(一)教学要求1、了解课程的性质与内容,能根据实物绘制机构运动简图2、熟练掌握机构自由度计算方法。了解机构组成原理(二)教学的重点与难点1、机构及运动副的概念、绘机构运动简图2、自由度计算,
3、虚约束,高副低代(三)教学内容1-1 机构结构分析的目的和方法研究机构的组成原理和机构运动的可能性以及运动确定的条件1-2 机构的组成机构是由构件组成的。一、运动副: 构件间的可动联接。(既保持直接接触,又能产生一定的相对运动)高副:点线接触 低副:面接触运动副元素自由度:构件含有独立运动的数目约束:对独立运动的限制低副:2个约束,1个自由度高副:1个约束,2个自由度低副:转动副:两个构件间不能作旋转运动的运动副;移动副:两个构件间不能作移动运动的运动副。高副:齿轮副;凸轮副。二、运动链、机构1、运动链:两个以上构件通过运动副联接而成的系统平面运动链;空间运动链(根据各构件间的相对运动为平面运
4、动还是空间运动分类)2、机构(从运动链角度):1、对一个运动链2、选一构件为机架3、确定原动件(一个或数个)4、原动件运动时,从动件有确定的运动。1-3 平面机构运动简图一、用规定的符号和线条按一定的比例表示构件和运动副的相对位置,并能完全反映机构特征的简图。二、绘制:1、运动副的符号转动副:移动副:齿轮副:凸轮副:2、构件(杆):3、机构运动简图的绘制,(模型,鄂式破碎机)1)分析机构,观察相对运动;2)找出所有的构件与运动副;3)选择合理的位置,即能充分反映机构的特性;4)确定比例尺,5)用规定的符号和线条绘制成间图。(从原动件开始画)1-4 平面机构的自由度机构的自由度:机构中各构件相对
5、于机架所能有的独立运动的数目。一、计算机构自由度(设n个活动构件,PL个低副,PH个高副) 二、机构具有确定运动的条件 (原动件数F,机构破坏)原动件数=机构自由度铰链五杆机构:原动件数0, 原动件数=F,运动确定 原动件数F,机构破坏三、计算F时注意问题(1)复合铰链m-1例: (2)局部自由度(与输出件运动无关的自由度称局部自由度) (3)虚约束:在特殊的几何条件下,有些约束所起的限制作用是重复的,这种不起独立限制作用的约束称为虚约束。 图1-15作业:P498,题1-1,1-2,1-3,1-4。平面机构的虚约束常出现于下列情况:(1)不同构件上两点间的距离保持恒定(2)两构件构成各个移动
6、副且导路互相平行(3)两构件构成各个转动副且轴线互相重合(4)在输入件与输出件之间用多组完全相同的运动链来传递运动(见课本P14)例:计算自由度(先看有无注意事项,复合铰链,再看有几个构件)1、2、,其中B、C为复合铰链。第二章 平面机构的运动分析(一)教学要求1、能根据实物绘制机构运动简图2、熟练掌握机构自由度计算方法。了解机构组成原理3、了解平面机构运动分析的方法,掌握瞬心法对机构进行速度分析4、熟练掌握相对运动图解法(二)教学的重点与难点1、机构及运动副的概念、绘机构运动简图2、自由度计算,虚约束,高副低代3、瞬心的概念及求法4、矢量方程,速度和加速度多边形,哥氏加速度,影像法(三)教学
7、内容2-1 研究机构运动分析的目的和方法一、目的:在设计新的机械或分析现有机械的工作性能副,都必须首先计算其机构的运动参数。二、方法:图解法:形象直观,精度不高,速度瞬心法,相对运动图解法解析法:较高的精度,工作量大实验法:2-2 速度瞬心法及其在机构速度分析上的应用一、速度瞬心:两构件上相对速度为零的重合点:瞬时绝对速度相同的重合点。相对速度瞬心:两构件都是运动的绝对速度瞬心:两构件之一是静止的i,j Pij(由理论力学可知,任一时刻,刚体1和2的相对运动可以看作是纯一重合点的转动,设该重点点为P12(图示位置),现在确定1,2重合点A的相对运动方向,即相对速度方向,称重合点P12为瞬时回转
8、中心,或速度瞬心。二、机构中瞬心的数目: k构件数三、瞬心位置的确定1、若已知两构件的相对运动,用定义确定2、形成运动副的两构件(用定义)转动副: 移动副: 高副: (纯滚动)3、不形成运动副的两构件(三心定理)三心定理:作平面运动的三个构件共有3个瞬心,它们位于同一直线上。P23位于P12、P13的连线上(为方便起见,设1固定不动)P12A, P13BM代表P23,设M不在AB连线上,方向AM,方向BM显然, 与方向不一致, M点不是瞬心M必须在AB连线上M点具体在AB上哪一个位置,由与大小相等的关系式确定例:P12B,P23C,P34D,P14AP13:P13、P12、P23共线;P13、
9、P14、P34共线。P24:P24、P12、P14共线;P24、P23、P34共线。四、利用瞬时对机构进行运动分析例:图示机构中,已知,构件2,以逆时针方向转动。求:机构的全部瞬心位置;从动件4的速度。解:1、画机构运动简图,取2、求瞬心P12A,P23B,P34C,P14无空道处P13:P13、P12、P23共线;P13、P14、P34共线P24:P24、P12、P14共线;P24、P23、P34共线3、从动件4的速度 例:凸轮以匀速逆时针转动,求该位置时从动件2的速度。解:1、取作机构运动简图 2、求瞬心,共线:P13A;P23CD无究道处;P12接触点公法线上 注意:V;构件数图较少时用
10、P12O,作业:P505: 21,22,2323 用相对运动图解法求机构的速度和加速度相对运动图解法:用相对运动原理列出构件上点与点之间的相对运动矢量方程,然后作图求解矢量方程。速度,加速度(用基点法求刚体的运动度)复习:相对运动原理。1)刚体(构件)的平面运动分解为随基点的平动加上绕基点的转动。 2)点的速度合成定理:(动点在某瞬时的绝对速度等于它在该瞬时的牵连速度与相对速度的矢量和)(重合点法)绝对运动 = 牵连运动 + 相对运动 动点对静系的运动 动系对静系的运动 动点对动系点的运动 刚体运动 点的运动动系平动:错误!链接无效。动系转动: 一、在同一构件上点间的速度和加速度的求法(基点
11、法)已知机构各构件的长度,求:。解:1定轴转动;2平面一般运动(平动,转动),3定轴转动。取作机构运动简图。1、求速度和角速度方向CD AB BC大小 ? ?, 方向 ? BE EC大小 ? ? ? , 方向:顺时针,逆时针在速度多边形中,bce和 BCE相似图形bce为 BCE的速度影响像。速度影像的用处:在速度多边形中:P极点,注意:速度影像只能应用于同一构件上的各点。2、求加速度,角加速度或 方向CD CD BA AB CB BC大小 ? ?,大小。 求:方向 ? b EB BE大小 ? , 加速度多边形中:同理: 和BCE相似 称为BCE的加速度影像。用处:注意:只用于机构中同一构件上
12、各点。为极点。作业:P506:2-4,2-5二、组成移动副两构件的重合点间的速度和加速度的求法(重合点法) 已知机构位置,尺寸,等角速求。解:1、取作机构运动简图 2、求角速度方向 BC AB BC大小 ? ?,顺时针 3、求角加速度方向 BC BC BA BC BC大小 ? ? 方向:将沿转动90。 ,逆时针举例: 已知:机械各构件的长度,(等角速度)求:滑块E, 导杆4,取作机构运动简图解:(1)方向 B4C AB B4C 大小 ? ? 方向:顺时针构件5:(2) 方向 x-x CD ED大小 ? ? (3) 方向 B4C B4C BA B4C(上) B4C大小 ? ? 方向:逆时针(4)
13、 方向 x-x ED ED大小 ? ? 作业:P506 2-7,2-8,2-102-4 用解析法求机构的位置、速度和加速度(简介)复数矢量法:是将机构看成一封闭矢量多边形,并用复数形式表示该机构的封闭矢量方程式,再将矢量方程式分别对所建立的直角坐标系取投影。先复习:矢量的复数表示法:已知各杆长分别为求:解:1、位置分析,建立坐标系。,封闭矢量方程式:以复数形式表示: (a)欧拉展开:实+i虚=实+i虚求出:2、速度分析:将式(a)对时间求导 (b)消去,两边乘按欧拉公式展开,取实部相等 同理求角速度为正表示逆时针方向,角速度为负表示顺时针方向。3、加速度分析:对(b)对时间求导。解析法在曲柄滑
14、块机构和导杆机构中的应用,自学。第四章 凸轮机构及其设计(一)教学要求1、了解凸轮机构的特点,能按运动规律绘制S-曲线2、掌握图解法设计凸轮轮廓,了解凸轮机构的自锁、压力角与基圆半径的关系(二)教学的重点与难点1、常用运动规律的特点,刚性冲击,柔性冲击,S-曲线绘制2、凸轮轮廓设计原理反转法,自锁、压力角与基圆半径的概念(三)教学内容41 凸轮机构的应用和分类凸轮机构的分类:按凸轮形状分: 1)盘形凸轮 2)移动凸轮3)圆柱凸轮按从动件型式分: 1)尖底从动件;2)滚子从动件;3)平底从动件按维持高副接触分(锁合); 1)力锁合弹簧力、重力等 2)几何锁合: 等径凸轮;等宽凸轮凸轮机构的优点:
15、结构简单、紧凑、设计方便,可实现从动件任意预期运动,因此在机床、纺织机械、轻工机械、印刷机械、机电一体化装配中大量应用。缺点:1)点、线接触易磨损;2)凸轮轮廓加工困难;3)行程不大42 从动件的运动规律凸轮的轮廓形状取决于从动件的运动规律基圆凸轮理论轮廓曲线最小矢径所作的圆。偏距圆从动件导路与凸轮回转中心O的偏负距离为e,并以e为半径O为圆心所作的圆。行程从动件由最低点到最高点的位移h(式摆角)推程运动角从动件由最低运行到最高位置,凸轮所转过的角。回程运动角高低凸轮转过的转角。远休止角从动件到达最高位置停留过程中凸轮所转过的角。近休止角从动件在最低位置停留过程中所转过的角。从动件位移线图从动
16、件位移S与凸轮转角(或时间t)之间的对应关系曲线。从动件速度线图加速度线图统称从动件运动线图。一、从动件常用运动规律1)等速运动 从动件开始和最大行程加速度有突变则有很大的冲击。这种冲击称刚性冲击。实质材料有弹性变形不可能达到,但仍然有强烈的冲击。只适用于低速轻载。2)等加速度、等减速度等加速度 等减速度 加速度有有限突变,柔性冲击,适用于中等速度轻载。3、(余弦PV速度)规律加速度有突变,仍存在柔性冲击。适用于中速、中载4、摆线运动规律(正弦加速度),见图P118,P65。这种规律没有加速度突变,则即不存在刚性冲击,又不存在柔性冲击,适用高速轻载。5、组合运动规律(自学),P11912143
17、 凸轮轮廓曲线设计一、作图法1、直动从动件星形凸轮机构已知:从动件运动规律,等角速度,偏距e,基园半径。要求:绘出凸轮轮廓曲线设计步骤: 以为半径作基园,e为半径作偏距园。 过K点作从动件等路交点。 作位移线图,分成若干等份。 等分偏距园,过K1,K2,K5作切线,交于基圆,C1,C2,C5 应用反转法,量取从动件在各切线对预置上的位移,由图中量取从动件位移,得B1,B2,即C1B1=11C2B2=Z2 将B0,B1连成光滑曲线,即为凸轮轮廓曲线对于滚子从动件星形凸轮机构,设计方法与上相同,只是只要把它乘作滚子中心看作为尖顶从动件凸轮,则由上方法得出的轮廓曲线称为理论轮廓曲线,然后以该轮廓曲线
18、为圆心,滚子半径为半径画一系列圆,再画这些圆所包络的曲线,即为所设计的轮廓曲线,这称为实际轮廓曲线。其中指理论轮廓曲线的其圆半径。对于平底从动件,则只要做出不同位置平底的包络线,即为实际轮廓曲线。2、摆动从动件星形凸轮机构已知:基圆半径,中心距a,摆杆长l,从动件运动规律求:凸轮轮廓曲线设计步骤: 以为半径作基圆,以中心距为a,作摆杆长为l与基圆交点于点 作从动件位移线图,并分成若干等分 以中心矩a为半径,o为原心作图 用反转法作位移线图对应等得点A0,A1,A2, 以l为半径,A1,A2,为原心作一系列圆弧交于基圆C1,C2,点 以l为半径作对应等分角。 以A1C1,A2C2向外量取对应的A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机械 原理 讲义 DOC75
