数形结合思想在小学数学中的运用课堂PPT.ppt
《数形结合思想在小学数学中的运用课堂PPT.ppt》由会员分享,可在线阅读,更多相关《数形结合思想在小学数学中的运用课堂PPT.ppt(80页珍藏版)》请在三一文库上搜索。
1、数形结合思想数形结合思想在小学数学教学中的运用在小学数学教学中的运用四川省德阳市第一小学四川省德阳市第一小学 张洪明张洪明1.(一)基本理念的修订(二)设计思路、具体内容和表达方式的修订数学的解释、核心理念、双基变四基、两能变四能、教师与生都为主、过程与结果同为重主要是四个领域的删、减、增、移,以及在其中贯彻增加核心概念(比如运算能力、几何直观、模型思想等)一、修订稿与实验稿的区别一、修订稿与实验稿的区别一、修订稿与实验稿的区别一、修订稿与实验稿的区别基本理念的修订基本理念的修订基本理念的修订基本理念的修订2.一、修订稿与实验稿的区别一、修订稿与实验稿的区别一、修订稿与实验稿的区别一、修订稿与
2、实验稿的区别基本理念的修订基本理念的修订基本理念的修订基本理念的修订l实验稿:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。l修改稿:(简洁、明了)修改稿:(简洁、明了)数学是数学是研究数量关系研究数量关系和和空间形式空间形式的科学。的科学。1、关于数学的解释3.2 2、关于核心理念中、关于核心理念中“面向全体学生面向全体学生”l实验稿:人人学有价值的数学;人人都能获得必需的数人人学有价值的数学;人人都能获得必需的数学学;不同的人在数学上得到不同的发展。l修改稿:修改稿:人人都能获得良好的数学教育,人人都能获得良好的数学教育,不同的人在数不同的人在
3、数学上得到不同的发展。学上得到不同的发展。一、修订稿与实验稿的区别一、修订稿与实验稿的区别一、修订稿与实验稿的区别一、修订稿与实验稿的区别基本理念的修订基本理念的修订基本理念的修订基本理念的修订4.l实验稿:双基:基础知识、基本技能。l修改稿:修改稿:四基:基础知识、基本技能、四基:基础知识、基本技能、基本思想基本思想、基本活动经验、基本活动经验。3、关于“双基”教学变“四基”教学。一、修订稿与实验稿的区别一、修订稿与实验稿的区别一、修订稿与实验稿的区别一、修订稿与实验稿的区别基本理念的修订基本理念的修订基本理念的修订基本理念的修订5.l基本思想:基本思想:l史宁中教授特别提到:抽象思想、推理
4、思想、模型思想l核心思想:归纳和演绎(而演绎、化归、转化、类比都属于推理思想)l常用的小学数学思想方法:对应思想方法、假设思想方法、比较思想方法、符号化思想方法、类比思想方法、转化思想方法、分类思想方法、集合思想方法、数形结合思想方法数形结合思想方法、统计思想方法、极限思想方法、代换思想方法、可逆思想方法、化归思维方法、变中抓不变的思想方法、数学模型思想方法、整体思想方法等等。一、修订稿与实验稿的区别一、修订稿与实验稿的区别一、修订稿与实验稿的区别一、修订稿与实验稿的区别基本理念的修订基本理念的修订基本理念的修订基本理念的修订6.l基本活动经验:基本活动经验:l一种方法是:1个5,2个5,3个
5、5。l另一种方法是:1个3,2个3,3个3,4个3,5个3。l这一系列数学思维活动,就为后边学习53积累了相关的数学活动经验。比如:让学生很快数出有多少颗五星。一、修订稿与实验稿的区别一、修订稿与实验稿的区别一、修订稿与实验稿的区别一、修订稿与实验稿的区别基本理念的修订基本理念的修订基本理念的修订基本理念的修订7.l基本活动经验:基本活动经验:数学活动经验,不仅仅是解题经数学活动经验,不仅仅是解题经验,更多的是数学思维活动的经验,更多的是数学思维活动的经验,数学思考习惯的经验。验,数学思考习惯的经验。不断积累!不断积累!一、修订稿与实验稿的区别一、修订稿与实验稿的区别一、修订稿与实验稿的区别一
6、修订稿与实验稿的区别基本理念的修订基本理念的修订基本理念的修订基本理念的修订8.l实验稿:重点是分析问题和解决问题的能力l修改稿:修改稿:明确提出:明确提出:发现发现和和提出提出问题问题能力能力 分析分析和和解决解决问题能力问题能力4、关于“两能”到“四能”:一、修订稿与实验稿的区别一、修订稿与实验稿的区别一、修订稿与实验稿的区别一、修订稿与实验稿的区别基本理念的修订基本理念的修订基本理念的修订基本理念的修订9.修订稿中十大核心概念:修订稿中十大核心概念:数数 感、符号感、符号意识意识、运算能力、模型思想模型思想、空间观念、空间观念、几何直观几何直观、推理、推理能力、数据分析观念、能力、数据
7、分析观念、应用意识、应用意识、创新意识创新意识一、修订稿与实验稿的区别一、修订稿与实验稿的区别一、修订稿与实验稿的区别一、修订稿与实验稿的区别基本理念的修订基本理念的修订基本理念的修订基本理念的修订10.几何直观(数形结合)十大核心概念之一一、修订稿与实验稿的区别一、修订稿与实验稿的区别一、修订稿与实验稿的区别一、修订稿与实验稿的区别基本理念的修订基本理念的修订基本理念的修订基本理念的修订11.几何直观 修订稿:几何直观利用图形描述问题和分析问题。把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。简单地说:就是指简单地说:就是指依托图形依托图形进行进行数学思考数学思考、想象想
8、象。二、几何直观(数形结合)的基本概念。二、几何直观(数形结合)的基本概念。二、几何直观(数形结合)的基本概念。二、几何直观(数形结合)的基本概念。12.数形本是相倚依,焉能分作两边飞?数形本是相倚依,焉能分作两边飞?数缺形时少直观,形少数时难入微,数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休,数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离。几何代数统一体,永远联系莫分离。华罗庚二、几何直观(数形结合)的基本概念。二、几何直观(数形结合)的基本概念。二、几何直观(数形结合)的基本概念。二、几何直观(数形结合)的基本概念。13.如果一个特定的问题可以转化为一个图
9、形,那么,思想就整体地把握了问题,并且能创造性地思索问题的解法。斯蒂恩(美国数学家)二、几何直观(数形结合)的基本概念。二、几何直观(数形结合)的基本概念。二、几何直观(数形结合)的基本概念。二、几何直观(数形结合)的基本概念。14.要看到图形,借助数看图形!要看到数,借助图形看数!把数学画出来!把事物量出来!促进了学生形象思维和抽象思维的协调发展沟通了数学知识之间的联系,从复杂的数量关系中凸显最本质的特征 二、几何直观(数形结合)的基本概念。二、几何直观(数形结合)的基本概念。二、几何直观(数形结合)的基本概念。二、几何直观(数形结合)的基本概念。15.运用于数学的各个领域数与代数图形与几何
10、统计与概率综合与实践几何直观运用领域 我们不仅在我们不仅在几何内容几何内容教学中要重视几何教学中要重视几何直观,在直观,在整个数学教学整个数学教学中都应该重视几何中都应该重视几何直观,培养几何直观应该直观,培养几何直观应该贯穿于教学始终。贯穿于教学始终。二、几何直观(数形结合)的基本概念。二、几何直观(数形结合)的基本概念。二、几何直观(数形结合)的基本概念。二、几何直观(数形结合)的基本概念。16.几何直观的表现形式借助图形展开想象揭示规律 几何图形、线段图、数轴、几何图形、线段图、数轴、方格纸、方格纸、坐标、方向标、坐标、方向标、示意图、示意图、列表、动画等一系列列表、动画等一系列图图形形
11、二、几何直观(数形结合)的基本概念。二、几何直观(数形结合)的基本概念。二、几何直观(数形结合)的基本概念。二、几何直观(数形结合)的基本概念。17.三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现 (1)数的表示用直线上的点表示数,可以明确地表示出数的性质(有始无终,有序性等等);18.100以内数的认识以内数的认识4610枝枝46三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现 (1)
12、数的表示用直线上的点表示数,可以明确地表示出数的性质(有始无终,有序性等等);19.三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现 (1)数的表示用直线上的点表示数,可以明确地表示出数的性质(有始无终,有序性等等);把阴影部分分别用分数和小数表示。把阴影部分分别用分数和小数表示。分数(分数()小数(小数()分数(分数()小数(小数()20.三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现
13、 (2)计算中的形运算的实物化、图形化和操作化,便于人们直观理解数和计算(摆小棒、画图形等)。21.三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现 (3)解决问题中的形画线段图表示数量关系。22.甲比乙多1/4。(鼓励学生画)乙:甲:三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现 (3)解决问题中的形画线段图表示数量关系。23.甲比乙多1/4(鼓励学生画)乙:甲:“1”三、数形结合思想
14、在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现 (3)解决问题中的形画线段图表示数量关系。24.三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现 (3)解决问题中的形解决问题的直观策略25.三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现 (3)统计中的图形条形统计图直观地反映出数量的多少。折线统计图
15、形象地表示数量发展的趋势。扇形统计图鲜明地说明部分数量与整体数量之间的关系。26.三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现 (3)统计中的图形)统计中的图形27.三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现三、数形结合思想在小学数学教材中的体现 (4)函数的多重表示及坐标系)函数的多重表示及坐标系28.四、数形结合思想的培养四、数形结合思想的培养四、数形结合思想的培养四、数形结合思想的培养l1、在教学中使学生逐步养
16、成画图的习惯在教学中使学生逐步养成画图的习惯l教学中应有这样的导向:能画图的尽量画将相对抽象的思考对象“图形化”29.l2 2、重视变换重视变换让图形动起来让图形动起来 几何变换或图形的运动是几何,也是整个教学中很重要的几何变换或图形的运动是几何,也是整个教学中很重要的内容,它既是学习的对象,也是认识数学的思想和方法。内容,它既是学习的对象,也是认识数学的思想和方法。例如:平行四边形、三角形、梯形、圆形等面积公式的推导,例如:平行四边形、三角形、梯形、圆形等面积公式的推导,让学生经历公式的形成过程;让学生经历公式的形成过程;图形的平移和旋转;图形的平移和旋转;图形的位置和方向变换、图形的放大与
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 结合 思想 小学 数学 中的 运用 课堂 PPT
