stata回归结果详解stata回归解释课件.pptx
《stata回归结果详解stata回归解释课件.pptx》由会员分享,可在线阅读,更多相关《stata回归结果详解stata回归解释课件.pptx(27页珍藏版)》请在三一文库上搜索。
1、stata回归结果详解付畅俭湘潭大学商学院数据来源于贾俊平统计学(第7版),第12章多元线性回归noyx1x2x3x410.967.36.8551.921.1111.319.81690.934.81737.71773.743.280.87.21014.557.8199.716.51963.262.716.22.212.271.6107.410.71720.2812.5185.427.11843.89196.11.71055.9102.672.89.11464.3110.364.22.11142.7124132.211.22376.7130.858.661422.8143.5174.612.72
2、6117.11510.2263.515.634146.716379.38.91529.9170.214.80.6242.1180.473.55.91125.319124.75413.4206.8139.47.22864.32111.6368.216.832163.9221.695.73.81044.5231.2109.610.31467.9247.2196.215.81639.7253.2102.2121097.1第二列SS对应的是误差平方和,或称变差。1.第一行为回归平方和或回归变差SSR,表示因变量的预测值对其平均值的总偏差。2.第二行为剩余平方和(也称残差平方和或剩余变差)SSE,是因变
3、量对其预测值的总偏差,这个数值越大,拟合效果越差,y的标准误差即由SSE给出。3.第三行为总平方和或总变差SST,表示因变量对其平均值的总偏差。4.容易验证249.37+63.28=312.65第三列df是自由度(degree of freedom),第一行是回归自由度dfr,等于变量数目,即dfr=m;第二行为残差自由度dfe,等于样本数目减去变量数目再减1,即有dfe=n-m-1;第三行为总自由度dft,等于样本数目减1,即有dft=n-1。对于本例,m=4,n=10,因此,dfr=4,dfe=n-m-1=20,dft=n-1=24。第四列MS是均方差,误差平方和除以相应的自由度1.第一行
4、为回归均方差MSR2.第二行为剩余均方差MSE,数值越小拟合效果越好1.方差分析F值,用于线性关系的判定。结合P值对线性关系的显著性进行判断,即弃真概率。所谓“弃真概率”即模型为假的概率,显然1-P便是模型为真的概率,P值越小越好。对于本例,P=0.00000.0001,故置信度达到99.99%以上。R-Squared为判定系数(determination coefficient),或称拟合优度(goodness of fit),它是相关系数的平方,也是SSR/SST,y的总偏差中自变量解释的部分。Adjusted对应的是校正的判定系数Root MSE为标准误差(standard error)
5、数值越小,拟合的效果越好2.模型显著性回归系数回归系数标准误差T值T值=Coef./Std.Err.P值置信区间置信区间(CI)0.0145294-invttail(20,0.025)*0.0830332=0.0145294-2.086*0.0830332=-0.15867480.0145294+2.086*0.0830332=0.18773353.回归系数检验P值用于说明回归系数的显著性,一般来说P值0.1(*)表示10%显著水平显著,P值0.05(*)表示5%显著水平显著,P值0.01(*)表示1%显著水平显著4.系数标准误差计算当自变量只有两个时,R2j就是这两个变量的相关系数(pwc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- stata 回归 结果 详解 解释 课件
