电力生产精彩活动问题数学模型.doc
《电力生产精彩活动问题数学模型.doc》由会员分享,可在线阅读,更多相关《电力生产精彩活动问题数学模型.doc(21页珍藏版)》请在三一文库上搜索。
1、word电力生产问题数学模型摘要本文研究电力生产问题中的最优化电力资源配置,属于求解优化电力配置下的最小成本问题。由于电力生产有非线性、多变量等特点,所以我们基于在每一时间段非线性局部最优的前提下,建立整体的单目标多变量的非线性最优化模型 。因此对于研究的课题,我们建立了一个有约束条件的目标函数的最优化模型来求解。在该模型的基础上我们建立起解决问题所需模型。解决问题(1)时,我们运用LINGO工具求解所建立的数学模型,得到每个时段的台数和成本如下表:(详细数据见)时段型号时段1时段2时段3时段4时段5时段6时段7总成本/元型号1020201014392700175075017501000130
2、0750型号40333333018003500180018000 解决问题(2)时,我们从节约能源和成本的前提出发,让在工作的每一台发电机保留出20%的发电能力,而不是让其发出多于需求电量的20%白白浪费,因此我们将“每个时段的电力需求”这个约束条件由问题(1)中的改为。得到每个时段的台数和成本如下表:(详细数据见)时段型号时段1时段2时段3时段4时段5时段6时段7总成本/元型号1050815015186750140014001400140014000型号433333332400200018001800关键词:非线性 整体最优化 LIGNO软件能源是推动社会进步和人们日常生活生产的基础,大量能
3、源的消耗已经给我们带来了许多环境问题。如臭氧破坏、大气污染、物种灭绝等。随着科技的进步,电是一种清洁能源,也是具有重要的战略资源。我国作为电力消耗大国,有责任也有义务合理开发利用电力这一宝贵资源。正因为如此,最优化电力生产、配置问题亟待我们进一步研究。对于该问题的研究不仅仅能带来巨大的经济效益,而且最一定程度上对保护环境也作出了巨大贡献。为满足每日电力需求(单位为兆瓦(MW),可以选用四种不同类型的发电机。每日电力需求如下表1。 表1:每日用电需求(兆瓦)时段(0-24)0-66-99-1212-1414-1818-2222-24需求120003200025000360002500030000
4、18000每种发电机都有一个最大发电能力,当接入电网时,其输出功率不应低于某一最小输出功率。所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。表2:发电机情况可用数量最小输出功率(MW)最大输出功率(MW)固定成本(元/小时)每兆瓦边际成本(元/小时)启动成本型号110750175022505000型号241000150018001600型号381200200037502400型号431800350048001200只有在每个时段开始时才允许启动或关闭发电机。与启动发
5、电机不同,关闭发电机不需要付出任何代价。根据题目所给的信息,要求我们通过数学建模来完成以下任务:问题(1) 在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少?问题(2) 如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少?假设假设1:题目中是给的数据真实可靠,具有普遍性。假设2:不同型号发电机之间独立运行互不影响。假设3:电动机的启动与关闭所需时间可以忽略不计。假设4:从前一天的24时到今天的0时这一分界点视为间断的,机子全部关闭。2.2符号说明 表一:符号说
6、明符号说明 表示第i时间段型号j发电机的台数 表示第i时间段型号j发电机的功率 表示第i时间段需要的总功率 表示第i时间段的工作时间 表示型号j发电机的最小功率 表示型号j发电机的最大功率 固定成本 启动成本 一台j型号发电机的固定成本 边际成本 型号发电机的边际成本 一天总成本 表示第i时间段型号j发电机的成本 表示时间段 表示型号 表示j型发动机提供的台数 表示第i时段启动的j型发动机的台数3问题分析 针对问题(1):在满足约束条件的情况下要求成本最小,总成本=总启动成本+总固定成本+总边际成本,。.其中每种型号的启动成本、固定成本和每兆的边际成本是已知的常数(题目以表格形式呈现)。 固
7、定 成 本总成本 启 动 成 本 边 际 成 本本题的变量为:各个时间段的不同型号的发电机台数以及发电机的实际输出功率。要求总启动成本和总固定成本必需知道7个时间段不同型号发电机台数,而求解总边际成本必需知道各个时间段不同型号发电机输出功率及台数。本题约束条件主要有3个:7个时间段的所需的输出功率;不同发电机的台数数量限制;不同发电机的功率有一个围限制。我们假设每一个时间段开始以后才可以开启或关闭发电机,与启动发电机不同关闭发电机不需要任何代价。由此,我们建立一个简单的目标函数最优化模型。我们在后面将运用LINGO求解。 针对问题(2):发电机组必须留出20%的发电能力余量情况下,求解成本最小
8、值 即要求每个时段最大输出功率控制在80%就能满足需求,在此基础上求解。和(1)类似我们可以建立目标函数最优化模型求解 4 数据分析将每一时段作为一个局部优化问题进行分析,建立局部非线性规划模型:目标函数:对于问题一:利用lingo软件(代码见附录一)求出局部最优解,其方案如下: 表二:第一问答案数据时段机组型号1型号2型号3型号40-6数量04300-6输出功率01500200006-9数量24836-9输出功率1750150020009-12数量04739-12输出功率014002000180012-14数量248312-14输出功率175015002000350014-18数量04731
9、4-18输出功率014002000180018-22数量148318-22输出功率17501500200022-24数量043322-24输出功率0150020002000对于问题二:将利用lingo软件(代码见附录一)求解出如下方案:表三:第二问答案数据时段机组型号1型号2型号3型号40-6数量04130-6输出功率0120016006-9数量54836-9输出功率1400120016009-12数量04839-12输出功率01200160012-14数量848312-14输出功率14001200160014-18数量1 48314-18输出功率140012001600200018-22数量
10、548318-22输出功率140012001600180022-24数量045322-24输出功率01150160018005 问题一的求解5.1 模型的建立 目标函数的确定 本文研究的是如何分配发电机才可以用最少的成本获得最大的发电量,根据题目要求,我们求解过程如下:发电机每天的工作成本: (1)第i个时间段j型发电机的固定成本:(2)第i个时间段j型发电机的边际成本:(3)第i个时间段j型发电机的启动成本:(4) 第个时间段型发电机需要重新开启的台数:(5)第i个时间段的总发电功率:约束条件的确定(1) 各型号发电机能使用的台数需小于等于所提供的台数,且必定为自然数:(2) 发电机的发电功
11、率需不大于最大发电功率,不小于最小发电功率:(3) 所有发电机的发电功率总和需不小于各时段的需求功率:建立发电成本最低模型如下:应用lingo(程序见附录一)进行求解如下表: 表四:所需台数和发电功率 时段机组型号1型号2型号3型号40-6数量04300-6输出功率01500200006-9数量24836-9输出功率1750150020009-12数量04739-12输出功率014002000180012-14数量248312-14输出功率175015002000350014-18数量047314-18输出功率014002000180018-22数量148318-22输出功率175015002
12、00022-24数量043322-24输出功率0150020002000最后所得结果是最小成本是1439270 结果分析从已知数据可知各时段的用电需求和成本科的如下两图:表五:各时段的用电需求表六:各成本最大最小值最小边际成本(元/小时)最大边际成本(元/小时)最小启动成本(台/元)最大启动成本(台/元)型号3441量值12005000表七:第一问的各型号数量表八:第一问中各型号发电机的功率结合每天各时段电力需求图分析可得,在电力需求量最大的2、4、6时间段,输出功率最大的型号4发电机全部使用,虽然其单位固定成本和边际成本较高,但它的启动成本最低,在需求电量大幅度增加时,使用输出功率最大的型号
13、4发电机可降低发电机的启动成本,从而使得总成本较小。6问题二的求解6.1 模型的建立题目要求发电机要保留自身发电能力的20%,以防当用电量突然增加时造成对发电机的损坏,我们只需限制每台发电机的实际功率不超过自身最大功率的80%即可。具体求解过程如下: 目标函数的确定 本文研究的是如何分配发电机才可以用最少的成本获得最大的发电量,根据题目要求,我们求解过程如下:发电机每天的工作成本: (1)第i个时间段j型发电机的固定成本:(2)第i个时间段j型发电机的边际成本:(3)第i个时间段j型发电机的启动成本:(5) 第个时间段型发电机需要重新开启的台数:(5)第i个时间段的总发电功率:约束条件的确定(
14、1) 各型号发电机能使用的台数需小于等于所提供的台数,且必定为自然数:(4) 发电机的发电功率需不大于最大发电功率,不小于最小发电功率:(5) 所有发电机的发电功率总和需不小于各时段的需求功率:建立发电成本最低模型如下:应用lingo(程序见附录二)进行求解如下表:表九:所需台数和发电功率 时段机组型号1型号2型号3型号4成本0-6数量04131766200-6输出功率0120016006-9数量54832704006-9输出功率1400120016009-12数量04831719509-12输出功率01200160012-14数量848320600012-14输出功率140012001600
15、14-18数量148323340014-18输出功率140012001600200018-22数量548331020018-22输出功率140012001600180022-24数量04537070022-24输出功率0115016001800最后所得结果是最小成本是1518675。6.3 结果分析表十:第二问的各型号数量表十一:第二问的时间段与功率的关系结合每天各时段电力需求图分析可得,在电力需求量最大的2、4、6时间段,输出功率最大的型号4发电机全部使用,虽然其单位固定成本和边际成本较高,但它的启动成本最低,在需求电量大幅度增加时,使用输出功率最大的型号4发电机可降低发电机的启动成本,从而
16、使得总成本较小。7 模型的评价改进及推广7.1模型的评价优点:(1) 本文通过目标函数最优化模型解决电力生产配置问题,达到最大程度的减少成本,又从局部到整体的考虑问题。具有全面性。(2) 利用数型结合的思想,将数图有机的结合起来,便于发现问题并给予解决。(3) 合理的假设使问题得到科学的解释,从而化抽象为具体,便于研究。缺点: 没有事先给电动机进行性能的评估,以便以后问题的研究。 我们将问题中在每个时间段应用的发电机次数进行了统计,然后得出了哪种发电机的性能较好,然后在建模的过程中以性能好的发电机为基础,进行优化配置其他发电机。统计显示如下: 问题一应用发电机型号时段型号型号1型号2型号3型号
17、406050%50%069109%188%50%203%9120224%56%216%121497%167%444%292%14180224%56%216%182258%20%533%209%22240333%333%334%平均比重38%262%49%21% 由此得出本问题应该首先选择型号2,3做为选择基准,然后将型号1,4做为辅助进行配置发电。 问题二应用发电机型号时段型号型号1型号2型号3型号406040%133%467%6921%15%40%231%9120224%56%216%1214311%133%356%20%141856%192%512%24%1822233%16%427%18
18、22240256%444%30%平均比重117%2119%3977%2734% 由此得出本问题应该首先选择型号3,4做为选择基准,然后将型号1,2做为辅助进行配置发电。我们建立的模型不仅可以用于电力生产配置方面,还可以应用于其他有输电,配电,购电等发电厂的诸多问题。参考文献1(美)米切斯切特()著;来福等译。数学建模方法与分析(原书第3版)M,:机械工业,2lingo教程EB/OL。3国立,现货市场功率分配问题模型及其求解算法研究 J,4伟达,电力生产决策支持系统中评估模型的研究与运用 J ,附录附录一:应用lingo软件计算的程序代码第一阶段:min=5000*n11+1600*n12+2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电力 生产 精彩 活动 问题 数学模型
