二元一次方程组复习教案.doc
《二元一次方程组复习教案.doc》由会员分享,可在线阅读,更多相关《二元一次方程组复习教案.doc(5页珍藏版)》请在三一文库上搜索。
1、学校:沙滘中学 年级:八年级 主备人:王彬课题二元一次方程组课型复习课个性化修改一、教学目标1、通过复习,使学生灵活运用代入法、加减法解二元一次方程组。2、学会解决实际问题,体会方程组是刻画现实世界的有效数学模型。3、运用图像法解二元一次方程组。4、培养分析、解决问题的能力,体会方程组的应用价值,感受数学文化。二、教学重点、难点重 点:知识结构,数学思想方法.难 点:实际应用问题中的等量关系.三、教学方法自主探索合作交流提炼升华四、教学过程(一)知识回顾1、二元一次方程组的有关概念:二元一次方程(的解),二元一次方程 组 (的解),解二元一次方程组;2、解二元一次方程组的基本思想是(),基本方
2、法是( 加减消元法、代入消元法、图像法 );3、二元一次方程与对应的一次函数间的关系:每个二元一次方程都可以转化为一次函数的形式;利用图像法解二元一次方程组的步骤:方程化成函数,画出函数图象,找出图像交点坐标,写出方程组的解;二元一次方程组的解的情况有几种,你能否借助函数图像说明你的结论。【二元一次议程组与一次函数之间的关系;一个二元一次方程的图象是一条直线。因此,二元一次方程组解的情况就可由平面上方程组对应的两条直线的位置关系确定。两条直线平行时方程组元解;两条直线相交时方程组有一个解;两条直线重合时,方程组有无穷多组解。反过来也成立。】4、二元一次方程组的应用:求待定字母的值;解应用问题(
3、一般步骤)(二)基础训练1、下列方程中,是二元一次方程的是()A3x2y=4zB6xy+9=0C3x+4y=6D4x=5-6x2、若方程ax+2=5x+3y是关于x、y的二元一次方程,则a应满足()。3、若x3+2m2yn+2=5是二元一次方程,则m=_,n=_4、若xy+2+(3y+2)2=0,则x+y=_。小结:二元一次方程一般形式ax+by+c=0(a0,b0),关键把握未知数系数不等于0,未知数的指数是1,转化成一元一次方程或二元一次方程组。(三)典型例析例1、已知二元一次方程组为 ,则x-y= _ , x+y=_。分析:可以解方程组,求得x、y的值,然后再代入求值。解法一: (1)(
4、2)2 : -3y=-9 y=3把y=3 代入(1)得:x=2原方程组的解为当时,x-y=2-3=-1, x+y=2+3=5观察到该方程组的方程,系数是对称的,因而可以直接利用加减法,求出所求代数式的值 解法二:(1)(2) 得 :x-y=-1【(1)+(2)】 得:x+y=5小结:解二元一次方程组时,注意观察系数特点,灵活选择适当的解法,有助于提高解题速度。例2、解方程组 学生先尽量用多种解法自己求解,然后在学习小组内交流,比较哪种解法好,最后各组推出最好的解法在全班交流。【可能方法】先用去分母把方程组化简整理后用加减消元法求得解答;化简整理后用代入消元法求得解答;用换元法。令x+y=m,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二元 一次 方程组 复习 教案
