正定矩阵及其应用.doc
《正定矩阵及其应用.doc》由会员分享,可在线阅读,更多相关《正定矩阵及其应用.doc(18页珍藏版)》请在三一文库上搜索。
1、本科毕业论文(设计)正定矩阵及其应用学生:学 号:专 业:指导教师:辩论时间:装订时间:. z-A Graduation Thesis(Project)Submitted to School of Science, Hubei University for NationalitiesIn Partial Fulfillment of the Requiring for BS DegreeIn the Year of 2021Positive definite matrices and their applicationsStudent Name: Student No.: Specialty
2、s Supervisor: Date of Thesis Defense: Date of Bookbinding:. z-摘要矩阵是高等代数里的一个根本概念,是代数知识的根底,是矩阵代数的一个主要研究对象. 它不仅是数学的一个重要分支,而且已经成为现在科技领域处理有限维空间形式与数量关系的强有力的工具. 而正定矩阵是从矩阵延伸出来的具有特殊性质的矩阵,是研究二次型的根底,在函数、不等式中都有应用,因此正定矩阵的特殊性质和广泛应用得到了许多学者关注,进而对此进展了大量的研究. 本文从矩阵最根本的概念和性质出发,由浅入深,层层递进. 从矩阵的性质出发,给出了正定矩阵定义及其等价定义,归纳整理了
3、正定矩阵的性质及其局部证明,总结了正定矩阵的判定定理,最后研究正定矩阵在理论证明和在函数极值中的应用.关键词:矩阵 正定二次型 正定矩阵 极值 AbstractThe matri* is very important in advanced algebra. It is not only an important branch, but also have bee a powerful tool for studying finite dimensional space and quantity r- elationship in the real of modern science and
4、technology. However , e*tending from the m- atrices, the positive definite matri* is a special matri*, which is a foundation for studying quadratic form and apply properly to both functions and inequality. Thus, its special prop- erty and wide applications have drawn scholarsattention, and a lot of
5、research have been done. This paper begins with the matri*primary concept and properties, going from the e- asy to the difficult. We define the positive definite matri* and its equivalent one, the sum up its properties and partial evidence, and summarize the determined theorems. At last, we study it
6、s application in theory and the solution of the function e*tremum.Keywords: matri*, positive definite quadratic, positive definite matri*, e*tremum . z-目录摘要IAbstractII1绪论11.1 课题背景11.2 课题研究的目的和意义11.3 国外研究概况22 预备知识32.1 矩阵32.2二次型53正定矩阵83.1正定二次型83.2正定矩阵的判定定理94正定矩阵的应用134.1正定矩阵的相关命题134.2正定矩阵在函数极值中的应用14总结与
7、展望18致19. z-1绪论我们知道矩阵是高等代数中非常重要的容之一. 在学习高等代数时,矩阵方面的知识也经常被用到. 而正定矩阵又是矩阵中的重点,它不单单用来解决数学中的问题,还应用于许多的科学领域. 本课题阐述了正定矩阵研究背景、正定矩阵的研究的目的和意义、正定矩阵的现状以及开展方向,明确指出了研究正定矩阵应用所面临的问题.1.1 课题背景正定矩阵作为一类常用矩阵,对它的研究最早出现在二次型中. 它也是从正定二次型中抽象出来的一个概念,有了正定矩阵的概念后,解决二次型的问题就变得简单方便. 不仅在代数学中应用广泛,在函数学、几何学、图像处理学、概率统计和物理学等学科中都得到了广泛的应用.
8、因此它的性质、定理以及应用问题一直备受学者关注. 而在实际生活问题中也经常出现一些相关数学问题,而用正定矩阵解决问题可能会更方便简洁一点. 这就需要我们研究正定矩阵的应用,如正定矩阵在四则运算、在函数极值、在不等式中的应用. 因此可以使得我们可以更好地使用正定矩阵这一重要工具. 本文通过对正定矩阵的理解和掌握,查阅各种相关资料,对正定矩阵及其相关知识点进展归纳总结,并且由此给出了正定矩阵在四则运算和函数极值及中的应用.根据课题研究容和手中相关文献资料,了解课题研究现状,学习掌握相关理论根底知识,并进展初步研究,撰写开题报告.1.2 课题研究的目的和意义矩阵是代数中一个非常重要的概念,是研究和解
9、决数学问题的一个重要工具. 而正定矩阵是一类非常重要的矩阵,在矩阵中扮演着重要的角色,因此是我们学习矩阵时不可忽略的重点. 本文对我们对数学感兴趣的学生深入理解和掌握正定矩阵理论有非常重要的意义. 能够加强我们对正定矩阵的掌握,也可以促进正定矩阵理论的进一步完善,丰富正定矩阵的应用,加强我们对正定矩阵的理解,丰富矩阵的理论知识. 有助于我们对整个高等代数知识的一体化的认识. 从而可以培养我们对代数知识的串联思想. 正定矩阵多方面的应用,能够开阔我们的视野,加强我们的联想能力,引起我们对数学的探究欲望,对知识的渴望. 研究矩阵的正定性,在代数理论和应用中具有重要意义. 正定矩阵不仅在数学方面,在
10、其他各个领域都具有广泛的应用价值,因此引起了学者们极大的研究兴趣. 这些研究不断丰富了正定矩阵的理论知识,也引起了我们对正定矩阵的兴趣.1.3 国外研究概况随着数学的影响力越来越大,矩阵对数学的研究也显得越来越重要. 在代数方面,正定矩阵也同样占有非常重要的地位. 因此人们对正定矩阵的研究也越来越广泛. 因而对正定矩阵的理解和应用也越来越深入,其应用围也越来越广泛. 在函数学、几何学、经济学、图像处理学、概率统计和物理学等学科中都得到了广泛的应用.在历史上,正定矩阵的相关研究最早出现在二次型和Hermite型中. 但是当时对于的正定矩阵局限于对实对称矩阵或者Hermite矩阵. 1970年,J
11、ohnson引入了不再局限于对实对称矩阵或者Hermite矩阵实对称矩阵的概念. 他给出了正定矩阵较为广义的定义. 1985年,炯生也给出了正定矩阵较为广义的定义. 1984年,佟文廷再次将正定矩阵的定义进展了推广. 他给出了推广正定矩阵的各种定义. 1988年,夏长富将实对称矩阵的正定性做了深入推广. 他又进一步极大的丰富了正定矩阵的理论. 1990年,屠伯埙将各类广义正定矩阵进展深度结合. 他重新定义了广义正定矩阵,将它称之为亚正定矩阵. 在研究正定矩阵的过程中,许多学者取得了惊人的理论成果,其成果也得到了广泛的应用. 除了对正定矩阵的研究,许多学者还对正定矩阵相关容进展了研究,同样取得了
12、巨大的成就. 近年来,在完善正定矩阵理论成果的历史中,得出了许多其他的概念和定理,将各类正定阵统一起来. 这些新的研究成果对完善正定矩阵的理论和其应用具有非常大的价值.虽然对正定矩阵的研究这么广泛,但是这些正定矩阵的研究只局限在正定矩阵的理论分析方面. 它的一些实际方面的应用还有待笔者和一些学者去探索挖掘. z-2 预备知识2.1 矩阵定义2.1.1 由个数排成的行列的数表,称为矩阵,记作特殊地,当时,矩阵称为方阵.定义2.1.2 把一矩阵的行列互换,所得到的矩阵称为的转置. 记为(或者记为).即, 设,所谓的地转置就是指矩阵显然,矩阵的转置是矩阵,即,则转置矩阵满足以下运算规律 数域上的矩阵
13、称为对称矩阵,如果.即假设,且满足,则称为对称矩阵. 任意一个阶实对称矩阵,都存在一个阶正交矩阵,使得成对角型. 对角线上的元素为矩阵的特征根.定义2.1.4 数域上的矩阵称为非退化的,如果;否则称为退化的. 即,假设则为非退化的.级方阵称为可逆的,如果有级方阵,使得 1这里是级单位阵.如果矩阵适合1,则称为的逆矩阵,记为.注1:只有方阵才可能可逆;注2:非零的矩阵不一定可逆;注3:假设可逆,则1中的必唯一;注4:假设,且可逆,则.设是阶可逆矩阵,以下结论成立:定理2.1.2 矩阵是可逆的充分必要条件是是非退化的.定义2.1.6 数域上矩阵称为合同的,如果有数域上可逆的矩阵,使合同是矩阵之间的
14、的一个关系,不难看出,合同关系具有:(1) 反身性:(2) 对称性:由即得(3) 传递性: 由和 即得定义2.1.7 设是两组文字,系数在数域中的一组关系式2称为由到的一个线性替换,或者简称线性替换,如果系数行列式则线性替换2称为非退化的.2.2二次型设是一数域. 一个系数在数域中的的二次齐次多项式 (3) 称为数域上的一个元二次型,或者,在不致引起混淆时简称二次型.令,由于,所以二次型3可以写成 5把5的系数排成一个矩阵,它就称为二次型5的矩阵. 令于是,二次型可以用矩阵的乘积表示出来.故定理2.2.1 在数域上,任意一个对称矩阵都合同于一对角阵. 即,对于任意一个对称矩阵A都可以找到一个可
15、逆矩阵使成对角矩阵. 二次型经过非退化的线性替换所变成的平方和形式称为二次型的一个标准形. 即为二次型的标准形. 任意一个复系数的二次型,经过一适当的非退化线性替换可以变成规形. 且规形是唯一的.即任一复数的对称矩阵合同于的对角阵.定义2.2.4 实二次型经过*一个非线性替换,可使 变成标准形,再做一次非退化线性替换就变成,称为实二次型 的规形.3正定矩阵在二次型中,正定二次型占有特殊的地位. 作为本章的开场,我们给出了它的定义,引出正定矩阵的定义. 正定矩阵同样占有非常特殊的地位,我们给出了正定矩阵的判定定理.3.1正定二次型定义3.1.1 在实二次型 的标准型形中,正平方项的个数称为 的正
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正定 矩阵 及其 应用
