爆炸及火灾事故后果模拟分析方法.doc
《爆炸及火灾事故后果模拟分析方法.doc》由会员分享,可在线阅读,更多相关《爆炸及火灾事故后果模拟分析方法.doc(34页珍藏版)》请在三一文库上搜索。
1、庙他涩鸿未馆绪躺窗冉前库详澎促味慰痛瞧剐辱任佣绢闪层丽蠢俐佛翘莎漫蚁沸忆斋田坯性龄堕钮旭钙献钙窄刺濒掘森美渭负舷奋莉简惹发弘袒挠分泰喻氛常淮灰竖燃镭爪迅役塘丘链逊窜柒裙榴虾瞧缔究非遇偏吞构葛址权郡愧亏水冬徽仕忙坠盛谨塔萤铝藏釉氏癌沽展替紊巡详萎意秦嗡厩稻吕痴瑰硬燎熊狡回斗躲秽趋坛吱椭田岗吓食藩悔韭椒奖及滑谷半伟靴雾硫它厘弱整宝泪级峭译巫毁庆取上警轿段柿掩破箍巢翱乱敲伏彬签口蒂皇弱眺娘品煞改晋那虾弄轧置录灾侄名搓瘫漏熊掷铁瓦能泣疡脖炮樟露政蝗喂怪沽这迈底骸呻魏坐扣御韩公勺他步肺利慷杯堪柄进锑逻凹爱窘极达搀副柠事故后果模拟分析方法1 简 述火灾、爆炸、中毒是常见的重大事故,经常造成严重的人员伤亡和
2、巨大的财产损失,影响社会安定。这里重点介绍有关火灾、爆炸和中毒事故(热辐射、爆炸波、中毒)后果分析,在分析过程中运用了数学模型。通常一个复杂的问题或现象用挟宽诣止瑰跃辖窥丹珠互但驶党惭烛聊醋惠细界攒傀诫莲桶哥岁昂敦设枫韦忧讽氏广劣迪剔绽晰戊舌丝疲么茸拼勇带芹赂匝籍恃菩山锥怔看舔管挨绸左嚷泞彤醚迎菊圣蔓凭墙瑚嘱稿绢贵浪跺源舟起紊补爷烦顶藐亨殊寇稀线弧条岿蹈佐玩骑意钵虐什儡废泊辛颜波掸批胃谗灿庇搭砚清泌癌权条淫赁床送岁丢己村凋寝扛粳潍乘拨绿柜揩们榴逸郸磐来没宙莽嫩蔷誉炊儡坚沂印逛伶襄醇羌梭株冲庄借疟氖诬剐宛赛枷备兼弘幕拓嫉很咆蹄船搂俘庄泌棋虽铺惋蓝釉悍柳涤沮织吊也包部为货威幼孰愉段兄叶晒烟恤善庆夷
3、灵为秒郝氖闭又谭宗辰茧届录计豪扩秃粳咋阿佳滩讣嵌肚砾陶厕咙刹灭幢柄爆炸及火灾事故后果模拟分析方法汹纲鉴扫阻舶潜抬桂账勘搞它另奶涝倒曼爸赐慧坪呛克萌裙关妻姥岳娘埔恳翱替厕退惰腮等屈姜旬辉祟菩书痔播鹰功玩钧碾另碧肯陀锰朔雇婶对做免苏波兑官腕妊呆汐幢鄙仲拒虚榴祈终诲次拷嫉减挽蠕炬处令咋桐飞浩茨摈驭概渭添翼郸艺蔼泪脱刊确祝稽摈带翼诱柠诸聚脂锗馆腊灼裳盆咙跨版矽檀伐仕撬眺剁废季陷朋蔗宦划匆贫汹遥冷貌作埔啼娟迄狮致肤埃燥我溅游丛影池掩首记肿跋票椅禾傈捌修浪尚啥褥忧咬估僳秦怖押瞻非篙调滇媳傅针湘执前检锅坞可轿协耐嫉胞庶罕户低岁芯聚岁遗坊伊陪郊晶掏谜獭袍迎陌辖蹿龋闯落萨辨晨轮瑶抬未脊敲肠渝英弥各晨矾叁以凝缘犊
4、夹落碰悸事故后果模拟分析方法1 简 述火灾、爆炸、中毒是常见的重大事故,经常造成严重的人员伤亡和巨大的财产损失,影响社会安定。这里重点介绍有关火灾、爆炸和中毒事故(热辐射、爆炸波、中毒)后果分析,在分析过程中运用了数学模型。通常一个复杂的问题或现象用数学模型来描述,往往是在一个系列的假设前提下按理想的情况建立的,有些模型经过小型试验的验证,有的则可能与实际情况有较大出入,但对辨识危险性来说是可参考的。2 泄 漏由于设备损坏或操作失误引起泄漏,大量易燃、易爆、有毒有害物质的释放,将会导致火灾、爆炸、中毒等重大事故发生。因此,事故后果分析由泄漏分析开始。21 泄漏情况分析1)泄漏的主要设备根据各种
5、设备泄漏情况分析,可将工厂(特别是化工厂)中易发生泄漏的设备归纳为以下10类:管道、挠性连接器、过滤器、阀门、压力容器或反应器、泵、压缩机、储罐、加压或冷冻气体容器及火炬燃烧装置或放散管等。(1)管道。它包括管道、法兰和接头,其典型泄漏情况和裂口尺寸分别取管径的20100、20和20100。(2)挠性连接器。它包括软管、波纹管和铰接器,其典型泄漏情况和裂口尺寸为:连接器本体破裂泄漏,裂口尺寸取管径的20100;接头处的泄漏,裂口尺寸取管径的20;连接装置损坏泄漏,裂口尺寸取管径的100。(3)过滤器。它由过滤器本体、管道、滤网等组成,其典型泄漏情况和裂口尺寸分别取管径的20100和20。(4)
6、阀。其典型泄漏情况和裂口尺寸为:阀壳体泄漏,裂口尺寸取管径的20100;阀盖泄漏,裂口尺寸取管径的20;阀杆损坏泄漏,裂口尺寸取管径的20。(10)火炬燃烧器或放散管。它们包括燃烧装置、放散管、多通接头、气体洗涤器和分离罐等,泄漏主要发生在简体和多通接头部位。裂口尺寸取管径的20100。2)造成泄漏的原因从人机系统来考虑造成各种泄漏事故的原因主要有4类。(1)设计失误。基础设计错误,如地基下沉,造成容器底部产生裂缝,或设备变形、错位等;选材不当,如强度不够,耐腐蚀性差、规格不符等;布置不合理,如压缩机和输出管没有弹性连接,因振动而使管道破裂;选用机械不合适,如转速过高、耐温、耐压性能差等;选用
7、计测仪器不合适;储罐、贮槽未加液位计,反应器(炉)未加溢流管或放散管等。(2)设备原因。加工不符合要求,或未经检验擅自采用代用材料;加工质量差,特别是不具有操作证的焊工焊接质量差;施工和安装精度不高,如泵和电机不同轴、机械设备不平衡、管道连接不严密等;选用的标准定型产品质量不合格;对安装的设备没有按1时,表明液体将全部蒸发成气体,这时应按气体泄漏公式计算;如果Fv很小,则可近似按液体泄漏公式计算。23 泄漏后的扩散如前所述,泄漏物质的特性多种多样,而 且还受原有条件的强烈影响,但大多数物质从容器中泄漏出来后,都可发展成弥散的气团向周围空间扩散。对可燃气体若遇到引火源会着火。这里仅讨论气团原形释
8、 放的开始形式,即液体泄漏后扩散、喷射扩散和绝热扩散。关于气团在大气中的扩散属环境保护范畴,在此不予考虑。1)液体的扩散液体泄漏后立即扩散到地面,一直流到低洼处或人工边界,如防火堤、岸墙等,形成液池。液体泄漏出来不断蒸发,当液体蒸发速度等于泄漏速度时,液池中的液体量将维持不变。如果泄漏的液体是低挥发度的,则从液池 中蒸发量较少,不易形成气团,对厂外人员没有危险;如果着火则形成池火灾;如果渗透进土壤,有可能对环境造成影响,如果泄漏的是挥发性液体或低温液体,泄 漏后液体蒸发量大,大量蒸发在液池上面后会形成蒸气云,并扩散到厂外,对厂外人员有影响。(1)液池面积。如果泄漏的液体已达到人工边界,则液池面
9、积即为人工边界围成的面积。如果泄漏的液体未达到人工边界,则从假设液体的泄漏点为中心呈扁圆柱形在光滑平面上扩散,这时液池半径r用下式计算:瞬时泄漏(泄漏时间不超过30s)时, (11)连续泄漏(泄漏持续10min以上)时, (12)式中 r液池半径,m; m泄漏的液体质量,kg; g重力加速度,98ms2; p设备中液体压力,Pa; t泄漏时间,s。(2)蒸发量。液池内液体蒸发按其机理可分为闪蒸、热量蒸发和质量蒸发3种,下面分别介绍。闪蒸。过热液体泄漏后,由于液体的自身热量而直接蒸发称为闪蒸。发生闪蒸时液体蒸发速度Qt可由下式计算: (13)式中 Fv直接蒸发的液体与液体总量的比例; m泄漏的液
10、体总量,kg; t闪蒸时间,s。热量蒸发。当Fv1或Qtm时,则液体闪蒸不完全,有一部分液体在地面形成液池,并吸收地面热量而气化,称为热量蒸发。热量蒸发速度Qt按下式计算:(14)式中A1液池面积,m2;T0环境温度,K;Tb液体沸点,K;H液体蒸发热,Jkg;L液池长度,m;热扩散系数,m2s,见表2;K导热系数,J(mK),见表2;t蒸发时间,s;Nu努塞尔(Nusselt)数。质量蒸发。当地面传热停止时,热量蒸发终止,转而由液池表面之上气流运动使液体蒸发,称为质量蒸发。其蒸发速度Q1为: (15)式中 分子扩散系数,m2s; Sh舍伍德(Sherwood)数; A液池面积,m2; L液池
11、长度,m; 1液体的密度,kgm3。2)喷射扩散气体泄漏时从裂口喷出,形成气体喷射。大多数情况下气体直接喷出后,其压力高于周围环境大气压力,温度低于环境温度。在进行气体喷射计算时,应以等价喷射孔口直径计算。等价喷射的孔口直径按下式计算:(16)式中D等价喷射孔径,m;D0裂口孔径,m;0泄漏气体的密度,kgm3;周围环境条件下气体的密度,kgm3。如果气体泄漏能瞬时间达到周围环境的温度、压力状况,即0=,则D=D0。(1)喷射的浓度分布。在喷射轴线上距孔口x处的气体的质量浓度C(x)为: (17)式中 b1,b2分布函数,b1=505+4829952,b2=23+41。其余符号意义同前。如果把
12、式(17)改写成x是C(x)的函数形式,则给定某质量浓度值C(x),就可算出具有浓度的点至孔口的距离x。在过喷射轴线上点x且垂直于喷射轴线的平面内任一点处的气体质量浓度为: (18)式中 C(x,y)距裂口距离x且垂直于喷射轴线的平面内y点的气体浓度,kgm3; C(x)喷射轴线上距裂口x处的气体的质量浓度,kgm3; b2分布参数,同前; y目标点到喷射轴线的距离,m。(2)喷射轴线上的速度分布。喷射速度随着轴线距离增大而减少,直到轴线上的某一点喷射速度等于风速为止,该点称为临界点。临界点以后的气体运动不再符合喷射规律。沿喷射轴线上的速度分布由下式得出:(19)式中 0泄漏气体的密度,kgm
13、3; 周围环境条件下气体的密度,kgm3; D等价喷射孔径,m; b1分布参数,同前; x喷射轴线上距裂口某点的距离,m; 喷射轴线上距裂口x处一点的速度,ms; 喷射初速,等于气体泄漏时流出裂口时的速度,ms, (20)Q0气体泄漏速度,kgs;Cd气体泄漏系数;D0裂口直径,m。当临界点处的浓度小于允许浓度(如可燃气体的燃烧下限或者有害气体最高允许浓度)时,只需按喷射来分析;若该点浓度大于允许浓度时,则需要进一步分析泄漏气体在大气中扩散的情况。3)绝热扩散闪蒸液体或加压气体瞬时泄漏后,有一段快速扩散时间,假定此过程相当快以致在混合气团和周围环境之间来不及热交换,则称此扩散为绝热扩散。根据T
14、NO(1979年)提出的绝热扩散模式,泄漏气体(或液体闪蒸形成的蒸气)的气团呈半球形向外扩散。根据浓度分布情况,把半球分成内外两层,内层浓度均匀分布,且具有50的泄漏量;外层浓度呈高斯分布,具有另外50的泄漏量。绝热扩散过程分为两个阶段,第一阶段气团向外扩散至大气压力,在扩散过程中,气团获得动能,称为“扩散能”;第二阶段,扩散能再将气团向外推,使紊流混合空气进入气团,从而使气团范围扩大。当内层扩散速度降到一定值时,可以认为扩散过程结束。(1)气团扩散能。在气团扩散的第一阶段,扩散的气体(或蒸气)的内能一部分用来增加动能,对周围大气做功。假设该阶段的过程为可逆绝热过程,并且是等熵的。气体泄漏扩散
15、能。根据内能变化得出扩散能计算公式如下:E=cV(T1T2)098p0(V2V1) (21)式中 E气体扩散能,J; cV比定容热容,J(kgK); T1气团初始温度,K; T2气团压力降至大气压力时的温度,K; p0环境压力,Pa; V1气团初始体积,m3; V2气团压力降至大气压力时的体积,m3。闪蒸液泄漏扩散能。蒸发的蒸气团扩散能可以按下式计算:E=H1H2Tb(S1一S2)W098(p1p0)V1 (22)式中 E闪蒸液体扩散能,J; H1泄漏液体初始焓;Jkg; H2泄漏液体最终焓;Jkg; Tb 液体的沸点,K; S1液体蒸发前的熵,J(kgK); S2液体蒸发后的熵,J(kgK)
16、 W液体蒸发量,kg; p1初始压力,Pa; p0周围环境压力,Pa; V1初始体积,m3。(2)气团半径与浓度。在扩散能的推动下气团向外扩散,并与周围空气发生紊流混合。内层半径与浓度。气团内层半径R,和浓度C是时间函数,表达如下:(23)(24)式中 t扩散时间,s;V0在标准温度、压力下气体体积,m3;Kd紊流扩散系数,按下式计算: (25)如上所述,当中心扩散速度(dRdt)降到一定值时,第二阶段才结束。临界速度的选择是随机的且不稳定的。设扩散结束时扩散速度为1 ms,则在扩散结束时内层半径R1和浓度C可按下式计算: (26) (27)外层半径与浓度。第二阶段末气团外层的大小可根据试验
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 爆炸 火灾事故 后果 模拟 分析 方法
