新人教版八年级数学上册期中考试知识点总复习精华版PPT课件.ppt
《新人教版八年级数学上册期中考试知识点总复习精华版PPT课件.ppt》由会员分享,可在线阅读,更多相关《新人教版八年级数学上册期中考试知识点总复习精华版PPT课件.ppt(95页珍藏版)》请在三一文库上搜索。
1、与三角形有关的线段知识结构图与三角形有关的线段知识结构图与三角形有与三角形有关的线段关的线段三角形的边三角形的边高线高线中线中线角平分线角平分线1三角形的高线定义:三角形的高线定义:顶点和垂足之间顶点和垂足之间三角形的主要线段三角形的主要线段从三角形的一个顶点向它的对边所在直线作垂线,从三角形的一个顶点向它的对边所在直线作垂线,_的线段叫做三角形的高线的线段叫做三角形的高线.三角形角平分线的定义:三角形角平分线的定义:顶点与交点顶点与交点三角形一个角的平分线与它的对边相交,这三角形一个角的平分线与它的对边相交,这个角的个角的 之间的线段叫做三角形的之间的线段叫做三角形的角平分线。角平分线。三角
2、形的中线定义三角形的中线定义顶点与它对边中点顶点与它对边中点连结三角形一个连结三角形一个 的线段的线段叫做三角形的中线。叫做三角形的中线。2三角形的三边关系三角形的三边关系:(1)三角形两边的三角形两边的和和大于大于第三边第三边判断三条已知线段判断三条已知线段a、b、c能否能否 组成组成三角形三角形.当当a最长最长,且且有有b+ca时时,就可构成三角形就可构成三角形.确定三角形第三边的取值范围确定三角形第三边的取值范围:两边之差两边之差第三边第三边两边之和两边之和.(2)三角形两边的三角形两边的差差小于小于第三边第三边3三角形的三条三角形的三条高线高线(或高线所在直线或高线所在直线)交于交于一
3、点一点锐角三角形三条高线交于三角形锐角三角形三条高线交于三角形内部一点内部一点,直角三角形三条高线交于直角三角形三条高线交于直角顶点直角顶点,钝角三角形三条高线所在直线交于三角形钝角三角形三条高线所在直线交于三角形外部一点外部一点。三角形的三条三角形的三条中线中线交于三角形内部一点。交于三角形内部一点。三角形的三条三角形的三条角平分线角平分线交于三角形内部一交于三角形内部一点。点。4三角形的分类三角形的分类锐角三角形锐角三角形三角形三角形钝角三角形钝角三角形(1)按角分按角分直角三角形直角三角形斜三角形斜三角形(2)按边分按边分腰和底不等的等腰三角形腰和底不等的等腰三角形三角形三角形等腰三角形
4、等腰三角形等边三角形等边三角形不等边三角形不等边三角形5一一.全等三角形全等三角形:1 1:什么是全等三角形?一个三角形经过哪些变化:什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?可以得到它的全等形?2 2:全等三角形有哪些性质?:全等三角形有哪些性质?能够完全重合的两个三角形叫做全等三角形。一个三角能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。形经过平移、翻折、旋转可以得到它的全等形。(1 1):全等三角形的对应边相等、对应角相等。):全等三角形的对应边相等、对应角相等。(2 2):全等三角形的周长相等、面积相等。):全等三角形的周长
5、相等、面积相等。(3 3):全等三角形的对应边上的对应中线、角平分):全等三角形的对应边上的对应中线、角平分线、高线分别相等。线、高线分别相等。6知识回顾:知识回顾:一般三角形一般三角形 全等的条件全等的条件:1.1.定义(重合)法;定义(重合)法;2.SSS2.SSS;3.SAS3.SAS;4.ASA4.ASA;5.AAS.5.AAS.直角三角形直角三角形 全等全等特有特有的条件:的条件:HL.HL.包括直角三角形包括直角三角形不包括其它形不包括其它形状的三角形状的三角形解题解题中常中常用的用的4 4种种方法方法7回顾知识点:回顾知识点:边边边:边边边:三边对应相等的两个三角形全等(可简写成
6、三边对应相等的两个三角形全等(可简写成“SSS”SSS”)边角边边角边:两边两边和和它们的夹角对应相等两个三角形全等它们的夹角对应相等两个三角形全等(可简写成(可简写成“SAS”)SAS”)角边角角边角:两角和它们的夹边对应相等的两个三角形全等两角和它们的夹边对应相等的两个三角形全等(可简写成(可简写成“ASA”)ASA”)角角边角角边:两角和其中一角的对边对应相等的两个三角形两角和其中一角的对边对应相等的两个三角形全等(可简写成全等(可简写成“AAS”)AAS”)斜边斜边.直角边:直角边:斜边和一条直角边对应相等的两个直角斜边和一条直角边对应相等的两个直角三角形全等(可简写成三角形全等(可简
7、写成“HL”)HL”)8方法指引证明两个三角形全等的基本思路:证明两个三角形全等的基本思路:(1 1)已知两边)已知两边-找第三边找第三边(SSS)找夹角找夹角(SAS)(2)(2)已知一边一角已知一边一角-已知一边和它的邻角已知一边和它的邻角找是否有直角找是否有直角(HL)已知一边和它的对角已知一边和它的对角找这边的另一个邻角找这边的另一个邻角(ASA)找这个角的另一个边找这个角的另一个边(SAS)找这边的对角找这边的对角(AAS)找一角找一角(AAS)已知角是直角,找一边已知角是直角,找一边(HL)(3)(3)已知两角已知两角-找两角的夹边找两角的夹边(ASA)找夹边外的任意边找夹边外的任
8、意边(AAS)9角的内部到角的两边的距离相等的点角的内部到角的两边的距离相等的点在角的平分线上。在角的平分线上。用法:用法:用法:用法:QDOA,QEOB,QDQE点Q在AOB的平分线上角的平分线上的点到角的两边的距离相等角的平分线上的点到角的两边的距离相等.用法:用法:用法:用法:QDOA,QEOB,点Q在AOB的平分线上 QDQE二二.角的平分线:角的平分线:1.角平分线的性质:角平分线的性质:2.角平分线的判定:角平分线的判定:10总结提高总结提高学习全等三角形应注意以下几个问题:学习全等三角形应注意以下几个问题:(1)1)要正确区分要正确区分“对应边对应边”与与“对边对边”,“对应角对
9、应角”与与 “对角对角”的不同含义;的不同含义;(2 2)表示两个三角形全等时,表示对应顶点的字母)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;要写在对应的位置上;(3 3)要记住)要记住“有三个角对应相等有三个角对应相等”或或“有两边及其有两边及其中一边的对角对应相等中一边的对角对应相等”的两个三角形不一定全等;的两个三角形不一定全等;(4 4)时刻注意图形中的隐含条件,如)时刻注意图形中的隐含条件,如“公共角公共角”、“公共边公共边”、“对顶角对顶角”11练习练习1:如图,:如图,AB=AD,CB=CD.求证求证:AC 平分平分BADADCB证明:在证明:在ABC和和ADC
10、中中 AC=AC AB=AD CB=CD ABC ADC (SSS)BAC=DAC AC平分平分BAD122、如图,、如图,D在在AB上,上,E在在AC上,上,AB=AC,B=C,试问试问AD=AE吗?为什么?吗?为什么?EDCBA解解:AD=AE理由:理由:在在ACD和和ABE中中 B=C AB=AC A=A ACD ABE (ASA)AD=AE133、如图,、如图,OBAB,OCAC,垂足为垂足为B,C,OB=OCAO平分平分BAC吗?为什么?吗?为什么?OCBA答:答:AO平分平分BAC理由:理由:OBAB,OCAC B=C=90 在在RtABO和和RtACO中中 OB=OC AO=AO
11、 RtABO RtACO (HL)BAO=CAO AO平分平分BAC 144、如图,、如图,AC和和BD相交于点相交于点O,OA=OC,OB=OD 求证:求证:DCAB证明:在证明:在ABO和和CDO中中 OA=OC AOB=COD OB=OD ABO CDO(SAS)A=C DCABAODBC15练习练习5:如图,小明不慎将一块三角形模具打碎为两如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带那配一块与原来一样的三角形模具呢?如果可以,带那块去合适?为什么?块去合适?
12、为什么?BA16FEDCBA6、如图,已知、如图,已知ACEF,DEBA,若使若使ABCEDF,还需要补还需要补充的条件可以是充的条件可以是 或或或或或或AB=EDAC=EFBC=DFDC=BF177:已知:已知 AC=DB,1=2.求证求证:A=D21DCBA证明:在ABC和DCB中 AC=DB 1=2 BC=CB ABCDCB (SAS)A=D 188、如图,已知,如图,已知,ABDE,AB=DE,AF=DC。请问图中有那几对全等三角形?请任选一对请问图中有那几对全等三角形?请任选一对给予证明。给予证明。FEDCBAABFDECCBFFECABCDEF答:答:199、如图,已知、如图,已知
13、E在在AB上,上,1=2,3=4,那么,那么AC等于等于AD吗?为什么?吗?为什么?4321EDCBA解:解:AC=AD理由:在理由:在EBC和和EBD中中 1=2 3=4 EB=EB EBC EBD (AAS)BC=BD 在在ABC和和ABD中中 AB=AB 1=2 BC=BD ABC ABD (SAS)AC=AD2010、已知,、已知,ABC和和ECD都是等边三角形,且点都是等边三角形,且点B,C,D在一在一条直线上求证:条直线上求证:BE=AD EDCAB变式:变式:以上条件不变,将以上条件不变,将ABC绕点绕点C旋转一定角度旋转一定角度(大于零度而小于六十度),(大于零度而小于六十度)
14、以上的结论还成立吗?以上的结论还成立吗?证明证明:ABC和和ECD都是等边三角形都是等边三角形 AC=BC DC=EC BCA=DCE=60 BCA+ACE=DCE+ACE即即BCE=DCA在在ACD和和BCE中中 AC=BC BCE=DCA DC=EC ACDBCE (SAS)BE=AD219、如图,已知、如图,已知E在在AB上,上,1=2,3=4,那么,那么AC等于等于AD吗?为什么?吗?为什么?4321EDCBA解:解:AC=AD理由:在理由:在EBC和和EBD中中 1=2 3=4 EB=EB EBC EBD (AAS)BC=BD 在在ABC和和ABD中中 AB=AB 1=2 BC=B
15、D ABC ABD (SAS)AC=AD2210、已知,、已知,ABC和和ECD都是等边三角形,且点都是等边三角形,且点B,C,D在一在一条直线上求证:条直线上求证:BE=AD EDCAB变式:变式:以上条件不变,将以上条件不变,将ABC绕点绕点C旋转一定角度旋转一定角度(大于零度而小于六十度),(大于零度而小于六十度),以上的结论还成立吗?以上的结论还成立吗?证明证明:ABC和和ECD都是等边三角形都是等边三角形 AC=BC DC=EC BCA=DCE=60 BCA+ACE=DCE+ACE即即BCE=DCA在在ACD和和BCE中中 AC=BC BCE=DCA DC=EC ACDBCE (SA
16、S)BE=AD23分析:分析:由于两个三角形完全重合,故面积、周长由于两个三角形完全重合,故面积、周长相等。至于相等。至于D,因为,因为AD和和BC是对应边,因此是对应边,因此ADBC。C符合题意。符合题意。说明:本题的解题关键是要知道中两个全等三角形说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找中,对应顶点定在对应的位置上,易错点是容易找错对应角错对应角。例题精析:例题精析:连接例题24例例2如图如图2,AECF,AD BC,ADCB,求证:求证:ADFCBE25分析:分析:已知已知ABCA1B1C1,相当于已知,相当于已知它们的对应边相等它们的对应
17、边相等.在证明过程中,可根据需要,在证明过程中,可根据需要,选取其中一部分相等关系选取其中一部分相等关系.例例3已知:如图已知:如图3,ABCA1B1C1,AD、A1D1分别是分别是ABC和和A1B1C1的高的高.求证:求证:AD=A1D1图图326例例4:求证:有一条直角边和斜边上的高:求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。对应相等的两个直角三角形全等。分析:分析:首先要分清首先要分清题设题设和和结论结论,然后按要求,然后按要求画出图形画出图形,根据题意写出根据题意写出已知求证已知求证后,再写出证明过程。后,再写出证明过程。说明:说明:文字证明题文字证明题的的书写格式要
18、标准书写格式要标准。27如图:将纸片ABC沿DE折叠,点A落在点F处,已知1+2=100,则A=度;28例例5、如图、如图6,已知:,已知:A90,AB=BD,ED BC于于D.求证:求证:AEED提示:提示:找两个全等三角形,需连结找两个全等三角形,需连结BE.图图629例6、如图:AB=AC,BD=CD,若B=28则C=;305、如图、如图5,已知:,已知:AB=CD,AD=CB,O为为AC任一点,过任一点,过O作直线作直线分别交分别交AB、CD的延长线于的延长线于F、E,求,求证:证:E=F.提示:提示:由条件易证由条件易证ABCCDA从而得知从而得知BACDCA,即:,即:AB CD.
19、31第十三章第十三章 轴对称轴对称32 把一个图形沿着一条直线折把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的图形就叫做轴对称图形。这条直线就是它的对称轴对称轴。这时我们也说这个图形关于这条直线(成轴)对称。把一个图形沿着某一条直线折叠,把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做图关于这条直线对称。这条直线叫做对称轴对称轴。折叠后重合的点是对应点,叫做_对称点对称点_.一一.轴对称图形
20、轴对称图形1、轴对称图形:、轴对称图形:2、轴对称:、轴对称:333 3、轴对称图形和轴对称的区别与联系轴对称图形和轴对称的区别与联系 轴对称图形轴对称图形轴对称轴对称区别区别联系联系图形图形(1)(1)轴对称图形是指轴对称图形是指()()具具 有特殊形状的图形有特殊形状的图形,只只对对()图图形形而而言言;(2)(2)对称轴对称轴()()只有一条只有一条(1)(1)轴对称是指轴对称是指()()图形图形 的位置关系的位置关系,必须涉及必须涉及 ()()图形图形;(2)(2)只有只有()()对称轴对称轴.如果把轴对称图形沿对称轴如果把轴对称图形沿对称轴 分成两部分分成两部分,那么这两个图形那么这
21、两个图形 就关于这条直线成轴对称就关于这条直线成轴对称.如果把两个成轴对称的图形如果把两个成轴对称的图形 拼在一起看成一个整体拼在一起看成一个整体,那那么它就是一个轴对称图形么它就是一个轴对称图形.一个一个一个一个不一定不一定两个两个两个两个一条一条知识回顾:344、轴对称的性质:关于某直线对称的两个图形是全等形。关于某直线对称的两个图形是全等形。如果两个图形关于某条直线对称,那么对如果两个图形关于某条直线对称,那么对称轴是称轴是 任何一对对应点所连线段的垂直平分任何一对对应点所连线段的垂直平分线。线。轴对称图形的对称轴,是任何一对对应点轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线
22、所连线段的垂直平分线。如果两个图形的对应点连线被同条直线垂如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。直平分,那么这两个图形关于这条直线对称。35解:3.361 1、什么叫线段垂直平分线?、什么叫线段垂直平分线?经过线段中点并且垂直于这条线段的直线,经过线段中点并且垂直于这条线段的直线,叫做这条线段的叫做这条线段的垂直平分线垂直平分线,也叫也叫中垂线。中垂线。2 2、线段垂直平分线有什么性质?、线段垂直平分线有什么性质?线段垂直平分线上的点线段垂直平分线上的点与这条线段的与这条线段的两个端点的距离相等两个端点的距离相等 (纯粹性)。你能画图说明吗?二二.线段的
23、垂直平分线线段的垂直平分线373.逆定理:与一条线段两个端点距离相等的点,在线段的垂直平分线上。(完备性)4.线段垂直平分线的集合定义:线段垂直平分线可以看作是线段垂直平分线可以看作是与线段两个端点距离相等与线段两个端点距离相等的所的所有点的集合。有点的集合。38三三.用坐标表示轴对称用坐标表示轴对称小结:小结:在平面直角坐标系中,关于在平面直角坐标系中,关于x轴对称轴对称的点的点横坐标相等横坐标相等,纵坐标互为相反数纵坐标互为相反数.关关于于y轴对称的点轴对称的点横坐标互为相反数横坐标互为相反数,纵坐纵坐标相等标相等.点(点(x,y)关于关于x轴对称的点的坐标为轴对称的点的坐标为_.点(点(
24、x,y)关于关于y轴对称的点轴对称的点的坐标为的坐标为_.(x,y)(x,y)391、完成下表、完成下表.已知点(2,-3)(-1,2)(-6,-5)(0,-1.6)(4,0)关于x轴的对称点关于y轴的对称点(-2,-3)(2,3)(-1,-2)(1,2)(6,-5)(-6,5)(0,-1.6)(0,1.6)(-4,0)(4,0)2、已知点、已知点P(2a+b,-3a)与点与点P(8,b+2).若点若点p与点与点p关于关于x轴对称,则轴对称,则a=_ b=_.若点若点p与点与点p关于关于y轴对称,则轴对称,则a=_ b=_.练 习246-20(抢答抢答)40 思考思考:如图:如图,分别作出点分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 八年 级数 上册 期中考试 知识点 复习 精华版 PPT 课件
