基于多传感器数据融合的分布式温度控制测量系统毕业课程设计外文文献翻译中英文翻译外文翻译.doc
《基于多传感器数据融合的分布式温度控制测量系统毕业课程设计外文文献翻译中英文翻译外文翻译.doc》由会员分享,可在线阅读,更多相关《基于多传感器数据融合的分布式温度控制测量系统毕业课程设计外文文献翻译中英文翻译外文翻译.doc(9页珍藏版)》请在三一文库上搜索。
1、DISTRIBUTED TEMPERATURE CONTROL TEMPERATURE MEASURING SYSTEM BASED ON MULTI-SENSOR DATA FUSIONAbstract: Temperature control system has been widely used over the past decades. In this paper, a general architecture of distributed temperature control system is put forward based on multi-sensor data fus
2、ion and CAN bus. A new method of multi-sensor data fusion based on parameter estimation is proposed for the distributed temperature control system. The major feature of the system is its generality, which is suitable for many fields of large scale temperature control. Experiment shows that this syst
3、em possesses higher accuracy, reliability, good realtime characteristic and wide application prospectKeywords: Distributed control system; CAN bus; intelligent CAN node; multi-sensor data fusion.1. Introduction Distributed temperature control system has been widely used in our daily life and product
4、ion, including intelligent building, greenhouse, constant temperature workshop, large and medium granary, depot, and so on1. This kind of system should ensure that the environment temperature can be kept between two predefined limits. In the conventional temperature measurement systems we build a ne
5、twork through RS-485 Bus using a single-chip metering system based on temperature sensors. With the aid of the network, we can carry out centralized monitoring and controlling. However, when the monitoring area is much more widespread and transmission distance becomes farther, the disadvantages of R
6、S-485 Bus become more obvious. In this situation, the transmission and response speed becomes lower, the anti-interference ability becomes worse. Therefore, we should seek out a new communication method to solve the problems produced by RS-485 Bus.During all the communication manners, the industrial
7、 control-oriented field bus technology can ensure that we can break through the limitation of traditional point to point communication mode and build up a real distributed control and centralized management system. As a serial communication protocol supporting distributed real-time control, CAN bus
8、has much more merits than RS-485 Bus, such as better error correction ability, better real-time ability, lower cost and so on. Presently, it has been extensively used in the implementation of distributed measurement and control domains. With the development of sensory technology, more and more syste
9、ms begin to adopt multi-sensor data fusion technology to improve their performances. Multi-sensor data fusion is a kind of paradigm for integrating the data from multiple sources to synthesize the new information so that the whole is greater than the sum of its parts 345. And it is a critical task b
10、oth in the contemporary and future systems which have distributed networks of low-cost, resource-constrained sensors2. Distributed architecture of the temperature control system The distributed architecture of the temperature control system is depicted in the Figure 1. As can be seen, the system con
11、sists of two modulesseveral intelligent CAN nodes and a main controller. They are interconnected with each other through CAN bus. Each module performs its part into the distributed architecture. The following is a brief description of each module in the architecture. 2.1 main controllerAs the system
12、s main controller, the host PC can communicate with the intelligent CAN nodes. It is devoted to supervise and control the whole system, such as system configuration, displaying running condition, parameter initialization and harmonizing the relationships between each part. Whats more, we can print o
13、r store the systems history temperature data, which is very useful for the analysis of the system performance2.2 Intelligent CAN node Each intelligent CAN node of the temperature control system includes five units: MCUa single chip, A/D conversion unit, temperature monitoring unitsensor group, digit
14、al display unit and actuatorsa cooling unit and a heating unit. The operating principle of the intelligent CAN node is described as follows. In the practical application, we divide the region of the control objective into many cells, and lay the intelligent CAN nodes in some of the typical cells. In
15、 each node, MCU collects temperature data from the temperature measurement sensor groups with the aid of the A/D conversion unit. Simultaneously, it performs basic data fusion algorithms to obtain a fusion value which is more close to the real one. And the digital display unit displays the fusing re
16、sult of the node timely, so we can understand the environment temperature in every control cell separately. By comparing the fusion value with the set one by the main controller, the intelligent CAN node can implement the degenerative feedback control of each cell through enabling the corresponding
17、heating or cooling devices. If the fusion result is bigger than the set value in the special intelligent CAN node, the cooling unit will begin to work. On the contrary, if the fusion result is less than the set value in the node the heating unit will begin to work. By this means we can not only moni
18、tor the environment temperature, but also can make the corresponding actuator work so as to regulate the temperature automatically. At the same time every CAN node is able to send data frame to the CAN bus which will notify the main controller the temperature value in the cell so that controller can
19、 conveniently make decisions to modify the parameter or not. Since the CAN nodes can regulate the temperature of the cell where they are, the temperature in the whole room will be kept homogeneous. Whats more, we can also control the intelligent node by modifying the temperatures setting value on th
20、e host PC.Generally, the processors on the spot are not good at complex data processing and data fusing, so it becomes very critical how to choose a suitable data fusion algorithm for the system. In the posterior section, we will introduce a data fusion method which is suitable for the intelligent C
21、AN nodes。3. Multi-sensor data fusion The aim to use data fusion in the distributed temperature control system is to eliminate the uncertainty, gain a more precise and reliable value than the arithmetical mean of the measured data from finite sensors. Furthermore, when some of the sensors become inva
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 传感器 数据 融合 分布式 温度 控制 测量 系统 毕业 课程设计 外文 文献 翻译 中英文
