初中数学思想方法的教学与应用.ppt
《初中数学思想方法的教学与应用.ppt》由会员分享,可在线阅读,更多相关《初中数学思想方法的教学与应用.ppt(45页珍藏版)》请在三一文库上搜索。
1、初中数学思想方法的教学与应用初中数学思想方法的教学与应用 中位数中位数 常用的数学思想方法常用的数学思想方法常用数学思想常用数学思想:建模思想、统计思想、最优化思想、建模思想、统计思想、最优化思想、转化与化归思想、类比思想、分类思想、转化与化归思想、类比思想、分类思想、整体思想、数形结合思想、方程思想、函整体思想、数形结合思想、方程思想、函数思想等。数思想等。常用数学方法:常用数学方法:配方法、换元法、待定系数法、参数法、配方法、换元法、待定系数法、参数法、构造法、特殊值法等。构造法、特殊值法等。中位数中位数 一、数学思想方法的培养应遵循的原则:一、数学思想方法的培养应遵循的原则:渗透性原则、
2、层次性原则、反复性原则渗透性原则、层次性原则、反复性原则 如何培养初中生的数学思想方法如何培养初中生的数学思想方法 二、在知识的传授全过程中,培养学生的数学思想二、在知识的传授全过程中,培养学生的数学思想 在在概念形成过程概念形成过程中、在中、在公式定理的证明过程公式定理的证明过程中、在中、在例题教学例题教学中、在中、在练习过程练习过程中渗透和培养数学思想中渗透和培养数学思想 三、培养学生自觉应用数学思想方法解决实际问三、培养学生自觉应用数学思想方法解决实际问题的能力题的能力中位数中位数初中数学思想方法的教学与应用初中数学思想方法的教学与应用类比联想类比联想整体思想整体思想数形结合思想数形结合
3、思想分类讨论思想分类讨论思想转化与化归思想转化与化归思想方程与函数思想方程与函数思想中位数中位数 类比联想类比联想 类比法,是通过对两个研究对象的比较,类比法,是通过对两个研究对象的比较,根据它们某些方面(属性、关系、特征、形根据它们某些方面(属性、关系、特征、形式等)的相同或相类似之处,推出它们在其式等)的相同或相类似之处,推出它们在其它方面也可能相同或相类似的一种推理方法。它方面也可能相同或相类似的一种推理方法。类比法所获得的结论是对两个研究对象的观类比法所获得的结论是对两个研究对象的观察比较、分析联想以至形成猜想来完成的,察比较、分析联想以至形成猜想来完成的,是一种由特殊到特殊的推理方法
4、是一种由特殊到特殊的推理方法 中位数中位数教学体现教学体现教学体现教学体现相似三角形判定方法的探索相似三角形判定方法的探索零指数幂和负整数指数幂的性质探索零指数幂和负整数指数幂的性质探索特殊平行四边形性质和判定的探索特殊平行四边形性质和判定的探索直线与圆的位置关系、圆与圆的位置关直线与圆的位置关系、圆与圆的位置关系的探索系的探索整式除法运算法则探索整式除法运算法则探索求多边形内角和求多边形内角和中位数中位数(2008中考)中考)18.(9分)复习分)复习“全等三角形全等三角形”的知识时,的知识时,老师布置了一道作业题:老师布置了一道作业题:“如图如图,已知在,已知在ABC中,中,AB=AC,P
5、是是ABC内部任意一点,将内部任意一点,将AP绕绕A顺时针旋转顺时针旋转至至AQ,使,使QAP=BAC,连接,连接BQ、CP,则,则BQ=CP”小亮是个爱动脑筋的同学,他通小亮是个爱动脑筋的同学,他通过对图过对图的分析,证明了的分析,证明了ABQACP,从而证得,从而证得BQ=CP之后,将点之后,将点P移到等腰三角形移到等腰三角形ABC之外,原题中的之外,原题中的条件不变,发现条件不变,发现“BQ=CP”仍然成立,请你就图仍然成立,请你就图给出证明给出证明图图中位数中位数(2010中考)中考)22.(1)操作发现)操作发现如图,矩形如图,矩形ABCD中,中,E是是AD的中点,将的中点,将ABE
6、沿沿BE折折叠后得到叠后得到GBE,且点,且点G在举行在举行ABCD内部小明将内部小明将BG延长交延长交DC于点于点F,认为,认为GF=DF,你同意吗?说明理由,你同意吗?说明理由(2)问题解决)问题解决保持(保持(1)中的条件不变,若)中的条件不变,若DC=2DF,求,求 的值;的值;(3)类比探求)类比探求保持(保持(1)中条件不变,若)中条件不变,若DC=nDF,求,求 的值的值F中位数中位数F中位数中位数2012中考中考中位数中位数整体思想整体思想 整体思想就是从问题的整体性质出整体思想就是从问题的整体性质出发,突出对问题的整体结构的分析和改发,突出对问题的整体结构的分析和改造,发现问
7、题的整体结构特征,从宏观造,发现问题的整体结构特征,从宏观整体上认识问题的实质,把一些彼此独整体上认识问题的实质,把一些彼此独立,但实质上又相互紧密联系的量作为立,但实质上又相互紧密联系的量作为整体来处理的思想方法。整体来处理的思想方法。中位数中位数教学体现教学体现教学体现教学体现多项式与多项式相乘的法则探索多项式与多项式相乘的法则探索二元一次方程组的解法二元一次方程组的解法代数式求值代数式求值分解因式分解因式整式的相关计算整式的相关计算中位数中位数应应应应 用用用用2、已知方程组的解是,则a+b=.3、1、若x=1时,代数式ax3+bx+7的值为4,则当x=-1时,求ax3+bx+7的值为;
8、4、中位数中位数5、如图,在高、如图,在高2米,坡角为米,坡角为30的楼梯表面铺地毯,则地毯的长度的楼梯表面铺地毯,则地毯的长度至少需要至少需要 米。米。6、如图,、如图,A,B,C两两不相交,且半径都是两两不相交,且半径都是0.5cm,则图中的阴影面积为则图中的阴影面积为 。中位数中位数数形结合思想数形结合思想 数形结合思想是指将数(量)与(图)形结合起数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。来进行分析、研究、解决问题的一种思维策略。数形结合就是把抽象的数学语言、数量关系与直数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,
9、通过观的几何图形、位置关系结合起来,通过“以形助以形助数数”或或“以数解形以数解形”即利用形的直观加深对数量关即利用形的直观加深对数量关系的理解或利用数的抽象性加深对图形的认识,实系的理解或利用数的抽象性加深对图形的认识,实现了抽象思维与形象思维的结合与转换。现了抽象思维与形象思维的结合与转换。中位数中位数教学体现教学体现教学体现教学体现数轴数轴平面直角坐标系平面直角坐标系函数函数空间与图形空间与图形 勾股定理勾股定理平方差公式、完全平方公式的几何意义平方差公式、完全平方公式的几何意义中位数中位数应应应应 用用用用2、关于、关于x的不等式组的不等式组 无解,则无解,则a的取值的取值范围是范围是
10、 。1、已知、已知a0,b0,且,且ab,则(,则()A、ba B、b C 、a|b|D、|b|a|3、如图是小张用火柴搭的、如图是小张用火柴搭的1条、条、2条、条、3条条“金鱼金鱼”。则搭则搭n条条“金鱼金鱼”需要火柴需要火柴 根。根。4、若、若M(,y1),N(,y2),P(,y3)三点都在函数三点都在函数(k0)的图象上,则)的图象上,则y1,y2,y3的大小关系为(的大小关系为()A、y2y3y1 B、y2y1y3 C、y3y1y2 D、y3y2y1中位数中位数 6 6、5 5、对于二次函数、对于二次函数y yaxax2 2bxbxc c若若a a0 0,b b0 0,c c 0 0,
11、则下面关于这个函数与则下面关于这个函数与x x轴的交点情况正确的是(轴的交点情况正确的是()A.A.只有一个交点只有一个交点 B.B.有两个,都在有两个,都在x x轴的正半轴轴的正半轴 C.C.有两个,都在有两个,都在x x轴的负半轴轴的负半轴 D.D.一个在一个在x x轴的正半轴,一个在轴的正半轴,一个在x x轴的负半轴轴的负半轴2012中考中考中位数中位数7 7、如图、如图,C,C为线段为线段BDBD上一动点上一动点,分别过点分别过点B B、D D作作ABBD,EDBD,ABBD,EDBD,连接连接ACAC、EC.EC.已知已知AB=5,DE=1,BD=8,AB=5,DE=1,BD=8,设
12、设CD=x.CD=x.(1)(1)用含用含x x的代数式表示的代数式表示ACACCECE的长;的长;(2)(2)请问点请问点C C满足什么条件时满足什么条件时,AC,ACCECE的值最小的值最小?(3)(3)根据根据(2)(2)中的规律和结论中的规律和结论,请构图求出代数式请构图求出代数式 的最小值的最小值.EDCBA中位数中位数分类讨论思想分类讨论思想 分类讨论思想又称逻辑划分,即把所有研分类讨论思想又称逻辑划分,即把所有研究的问题根据题目的特点和要求,分成若干究的问题根据题目的特点和要求,分成若干类,转化成若干个小问题来解决,这种按不类,转化成若干个小问题来解决,这种按不同情况分类,然后再
13、逐一研究解决的数学思同情况分类,然后再逐一研究解决的数学思想。想。当数学问题中的当数学问题中的条件、结论不明确条件、结论不明确或或题意题意中含参数或图形不确定中含参数或图形不确定时,就应分类讨论。时,就应分类讨论。分类讨论解题的实质,是将整体问题化为部分类讨论解题的实质,是将整体问题化为部分问题来解决分问题来解决,以增加题设条件。以增加题设条件。中位数中位数分类讨论的步骤及原则分类讨论的步骤及原则1、明确讨论对象,确定对象的全体,确立分类标、明确讨论对象,确定对象的全体,确立分类标准(准(标准统一,标准不同,结果也不相同);标准统一,标准不同,结果也不相同);2、恰当分类(、恰当分类(结果无遗
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 思想 方法 教学 应用
