广东初二数学下册知识点总结超经典.doc
《广东初二数学下册知识点总结超经典.doc》由会员分享,可在线阅读,更多相关《广东初二数学下册知识点总结超经典.doc(10页珍藏版)》请在三一文库上搜索。
1、 初二数学下知识点总结函数与其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。使函数有意义的自变量的取值的全体,叫做自变量的取值围。3、函数的三种表示法与其优缺点1解析法两个变量间的函数关系,有时可以用一个含有这两个变量与数字运算符号的等式表示,这种表示法叫做解析法。2列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表
2、法。3图像法:用图像表示函数关系的方法叫做图像法。4、由函数解析式画其图像的一般步骤1列表:列表给出自变量与函数的一些对应值2描点:以表中每对对应值为坐标,在坐标平面描出相应的点3连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。正比例函数和一次函数 1、正比例函数和一次函数的概念一般地,如果k,b是常数,k0,那么y叫做x的一次函数。特别地,当一次函数中的b为0时,k为常数,k0这时,y叫做x的正比例函数。2、一次函数的图像所有一次函数的图像都是一条直线。3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点0,b的直线;正比例函数的图像是经过原点0,0的直线。如以下图
3、4. 正比例函数的性质一般地,正比例函数有以下性质:1当k0时,图像经过第一、三象限,y随x的增大而增大;2当k0时,y随x的增大而增大2当k0b0 y 0 x图像经过一、二、三象限,y随x的增大而增大。b0 y 0 x图像经过一、三、四象限,y随x的增大而增大。K0 y 0 x 图像经过一、二、四象限,y随x的增大而减小b0 y 0 x 图像经过二、三、四象限,y随x的增大而减小。注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。四边形1四边形的角和与外角和定理:1四边形的角和等于360;2四边形的外角和等于360.2多边形的角和与外角和定理:1n边形的角和等于(n-2)1
4、80;2任意多边形的外角和等于360.3平行四边形的性质:因为ABCD是平行四边形4.平行四边形的判定:.5.矩形的性质:因为ABCD是矩形6. 矩形的判定:四边形ABCD是矩形.7菱形的性质:因为ABCD是菱形8菱形的判定:四边形四边形ABCD是菱形.9正方形的性质:因为ABCD是正方形1 23 10正方形的判定:四边形ABCD是正方形.(3)ABCD是矩形又AD=AB 四边形ABCD是正方形11等腰梯形的性质:因为ABCD是等腰梯形12等腰梯形的判定:四边形ABCD是等腰梯形(3)ABCD是梯形且ADBCAC=BDABCD四边形是等腰梯形14三角形中位线定理:三角形的中位线平行第三边,并且
5、等于它的一半.15梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.一 根本概念:四边形,四边形的角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.二 定理:中心对称的有关定理1关于中心对称的两个图形是全等形.2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.3如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.三 公式: 1S菱形 =ab=ch.a、b为菱形的对角线 ,c为菱形的边长 ,h为c边上的高2S平行四边形 =ah.
6、a为平行四边形的边,h为a上的高3S梯形 =a+bh=Lh.a、b为梯形的底,h为梯形的高,L为梯形的中位线四 常识:1假设n是多边形的边数,那么对角线条数公式是:.2规那么图形折叠一般“出一对全等,一对相似.3如图:平行四边形、矩形、菱形、正方形的附属关系.4常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 ;仅是中心对称图形的有:平行四边形 ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 .注意:线段有两条对称轴.5梯形中常见的辅助线:平移与旋转旋转1. 旋转的定义:在平面,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。2.
7、旋转的性质: 旋转后得到的图形与原图形之间有:对应点到旋转中心的距离相等,旋转角相等。中心对称1. 中心对称的定义: 如果一个图形绕某一点旋转180度后能与另一个图形重合,那么这两个图形叫做中心对称。2. 中心对称图形的定义: 如果一个图形绕一点旋转180度后能与自身重合,这个图形叫做中心对称图形。3. 中心对称的性质: 在中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分。轴对称1. 轴对称的定义:如果一个图形沿一条直线折叠后,直线两旁的局部能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。2. 轴对称图形的性质:角的平分线上的点到这个角的两边的距离相等。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广东 初二 数学 下册 知识点 总结 经典
