英汉双语流体力学第三章流体动力学基础.ppt
《英汉双语流体力学第三章流体动力学基础.ppt》由会员分享,可在线阅读,更多相关《英汉双语流体力学第三章流体动力学基础.ppt(134页珍藏版)》请在三一文库上搜索。
1、 Fluid Mechanics12Chapter 3 Basis of Fluid Dynamics 34 Continuity Equation31 Preface32 Methods to Describe Fluid Motion33 Basic Concepts of Fluid Motion 35 Motion Differential Equation of Ideal Fluid36 Bernoulli Equation and Its Application37 System and Control Volume38 Momentum Equation39 Moment of
2、 Momentum Equation Exercises of Chapter 33 第三章第三章 流体动力学基础流体动力学基础 34 连续方程式连续方程式31 引言引言32 描述流体运动的方法描述流体运动的方法33 流体运动的基本概念流体运动的基本概念35 理想流体的运动微分方程理想流体的运动微分方程36 伯努利方程及其应用伯努利方程及其应用37 系统与控制体系统与控制体38 动量方程动量方程39 动量矩方程动量矩方程 第三章第三章 习习 题题4Chapter 3 Basis of Fluid Dynamics3-1 3-1 Preface The backgrounds,fundament
3、als and fundamental equations of fluid dynamics all have certain relations with each part of engineering fluid mechanics,so this chapter is the emphases in the whole lessons.5第三章第三章 流体动力学基础流体动力学基础 3-1 3-1 引言引言 流体动力学的基础知识,基本原理和基本方程与工程流体力学的各部分均有一定的关联,因而本章是整个课程的重点。63-23-2 Methods to Describe the Fluid
4、MotionMethods to describe the fluid motion:1.Lagranges method Definition:Lagranges method is to consider the fluid particles as research objects and to research the motion course of each particle,and then gain the kinetic regulation of the whole fluid through synthesizing motion instances of all bei
5、ng researched objects.The essential of lagrangian method is a method of particle coordinates.73-23-2 描述流体运动的方法描述流体运动的方法描述流体运动的方法:描述流体运动的方法:一、一、拉格朗日法拉格朗日法 定义:定义:把流体质点作为研究对象,研究各质点的运动历程,然后通过综合所有被研究流体质点的运动情况来获得整个流体运动的规律,这种方法叫做拉格朗日法。实质是一种质点系法。8 when we use lagranges method to describe the fluid motion th
6、e position coordinates of motion particles are not independent variables but functions of original coordinate a,b,c and time variable t,that is (31)In this formula,a,b,c and t are all called lagrangian variables.Different particles have different original coordinates.Difficulties will be met when us
7、ing lagranges method to analyze fluid motion on math except for fewer instances(such as researching wave motion).Eulers method is used mostly in fluid motion.9 用拉格朗日法描述流体的运动时,运动质点的位置坐标不是独立变量,而是起始坐标a、b、c和时间变量 t 的函数,即(31)式中a,b,c,t 统称为拉格朗日变量,不同的运动质点,起始坐标不同。用拉格朗日法分析流体运动,在数学上将会遇到困难。除少数情况外(如研究波浪运动),在流体运动中
8、多采用欧拉法。102.Eulers method Definition:When we use Eulers method to describe fluid motion the motion factors are continuous differential functions of space coordinates x,y,z and time variable t.x,y,z and t are called Eulers variables.So the velocity field can be expressed by the following formulas:(32)
9、With a view to the space points in the fluid field(the space full of motion fluid)without researching the moving course of each particle.It is to synthesize enough space points to gain the regulation of the whole fluid by observing the regulations of motion factors of particle flowing via each space
10、 point changing with time which is called Eulers method(fluid field method).11二、欧拉法二、欧拉法 定义:定义:用欧拉法描述流体的运动时,运动要素是空间坐标x,y,z和时间变量t的连续可微函数。x,y,z,t 称为欧拉变量,因此 速度场可表示为:(32)不研究各个质点的运动过程,而着眼于流场(充满运动流体的空间)中的空间点,即通过观察质点流经每个空间点上的运动要素随时间变化的规律,把足够多的空间点综合起来而得出整个流体运动的规律,这种方法叫做欧拉法(流场法)。12Pressure field and density
11、field can be expressed as:(33)(34)In the formula(32)x,y and z are motion coordinates of fluid particles at time t and namely are functions of time variable t.So according to the principle of compound function differentiate and also think over the following formulas:The acceleration components in dir
12、ection of space coordinates of x,y,z are:(35)13压强和密度场表示为:(33)(34)式(32)中x,y,z是流体质点在 t 时刻的运动坐标,即是时间变量 t 的函数。因此,根据复合函数求导法则,并考虑到可得加速度在空间坐标x,y,z方向的分量为(35)14The vector expression is(35a)In it Accelerate is consisted by Local accelerate:which shows the variety of velocity of fluid particles through fixed s
13、pace points changing with time.Migratory accelerate which shows variance ratio of velocity brought by the change of space situation of fluid particles.When using Eulers method to query variance ratio of other motion factors of fluid particle changing with time the normal formula is(36)is called tota
14、l derivative,is called local derivative,is called migratory derivative.15矢量式为(35a)其中加速度的组成当地加速度 。表示通过固定空间点的流体质点速度随时间的变化。迁移加速度 。表示流体质点所在空间位置的变化所引起的速度变化率。用欧拉法求流体质点其它运动要素对时间变化率的一般式子为(36)称 为全导数,为当地导数,为迁移导数。163-3-3 Basic Concepts of Fluid Motion 1.Stationary flow and nonstationary flow Definition:In fact
15、ual engineering problems,motion factors of quite a few un steady flow changing with time very slowly which can be treated as steady flow problems approximatively.Or else it is called nonstationary flow.If all motion factors of each space point on fluid field dont change with time,this kind of flow i
16、s called steady flow.that is:173-3 流体运动的基本概念一、定常流动与非定常流动一、定常流动与非定常流动 定义:定义:在实际工程问题中,不少非定常流动问题的运动要素随时间变化非常缓慢,可近似地作为定常流动来处理。否则,称为非定常流动。若流场中各空间点上的一切运动要素都不随时间变化,这种流动称为定常流动。即 182.Trace and Streamline Definition:Figure 31 TraceAccording to the differential equation of trace line is(37)When using Lagrange
17、method to describe fluid motion the concept of trace line is introduced(1).Trace On special situation(x,y,z)the track of a certain fluid particle moveing with time is shown in Figure 3-1.19二、迹线和流线二、迹线和流线 定义:定义:图 31 迹 线 根据 迹线微分迹线微分方程方程为(37)用拉格朗日法描述流体运动引进迹线概念。1、迹线 特定位置(x,y,z)处某流体质点随时间推移所走的轨 迹。如图31所示。2
18、0 Figure 32 streamline Definition:(2).Streamline When using Eulers method to describe fluid motion vividly the concept of Streamline is introduced A streamline is a curve which is drawed on fluid field in a certain instant.On this curve velocity vector of all particles are tangent with the curve.Jus
19、t as shown in Figure 32。If the formula(3-8)is expressed by projection form,then it is The differential equation of streamline:Suppose the velocity vector of a certain point on srteamline is the micro unit segment vector on streamline is ,According to the definition of streamline the differential equ
20、ation expressed by vector is(38)(38a)21 图 32 流 线2、流线 定义:定义:流线的微分方程:流线的微分方程:设流线上一点的速度矢量为流线上的微元线段矢量 根据流线定义,可得用矢量表示的微分方程为(38)若写成投影形式,则为(38a)用欧拉法形象地对流场进行几何描述,引进了流线的概念。某一瞬时在流场中绘出的曲线,在这条曲线上所有质点的速度矢量都和该曲线相切,则此曲线称为流线。如图32。22 example 31 Given that the velocity filed is In it,k is constant,try to query the st
21、reamline equation.from formula(38a)we can get integral of it is solution According to and we can obtain that the fluid motion is only limit to the upper half plane of .Just as shown in Figure 33,the flowing streamlines are a group of equiangular hyperbolas.Figure 33 hyperbolic streamline (1)On norma
22、l circumstance streamlines cant intersect ,moreover it must be smoothed curves.(2)On the condition of steady flow the shape and situation cant change with time.characters of streamline:23 例题例题31已知速度场为其中k为常数,试求流线方程。由式(38a)有积分上式的流线方程为如图33所示,该流动的流线为一族等角双曲线。流线的性质:流线的性质:解解根据 及 可知流体运动仅限于 的上半平面。图33双曲流线 (1)
23、一般情况下,流线不能相交,且只能是一条光滑曲线;(2)在定常流动条件下,流线的形状、位置不随时间变化,且流线与迹线重合。243.Stream tube,stream flow and cross section of flow Definition:Figure 34 stream tubeFigure 35 stream flow and whole streamFigure 36 cross section of flow(1).Stream tube Take a random close curve C on fluid field,draw streamlines via every
24、 points on C,the pipe surrounded by these streamlines is called stream tube.As shown in Figure 34.Because streamlines cant intersect fluid particles only can flow in the stream tube or via the surface of flow pipe on each time but cant go through the stream tube.so the stream tube just likes a reall
25、y tube.25三、流管、流束与过流断面三、流管、流束与过流断面 定义:定义:图 34 流管图35流束和总流图 36 过 流 断 面 由于流线不能相交,所以各个时刻,流体质点只能在流管 内部或沿流管表面流动,而不能穿越流管,故流管仿佛就是一 根真实的管子。1、流管 在流场中取任意封闭曲线C,经过曲线C的每一点作流线,由这些流线所围成的管称为流管。如图34所示。26(2)Stream flow The summation of all streamlines in stream tube is called stream flow.The stream whose sections is in
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 英汉 双语 流体力学 第三 流体动力学 基础
