相关系数课件.ppt
《相关系数课件.ppt》由会员分享,可在线阅读,更多相关《相关系数课件.ppt(26页珍藏版)》请在三一文库上搜索。
1、相关系数1、两个变量的关系、两个变量的关系不相关不相关相关相关关系关系函数关系函数关系线性相关线性相关非线性相关非线性相关相关关系:相关关系:对于两个变量,当自变量取值一定对于两个变量,当自变量取值一定时,因变量的取值带有一定随机性的两个变量时,因变量的取值带有一定随机性的两个变量之间的关系。之间的关系。复习回复习回顾顾相关关系相关关系 给出两个变量,当一个变量一定时,另给出两个变量,当一个变量一定时,另一个变量的取值具有一定的随机性一个变量的取值具有一定的随机性1、注意与函数关系的区别、注意与函数关系的区别2、回归分析、回归分析散点图散点图 将样本中的所有数据点(将样本中的所有数据点(xi,
2、yi),描,描在平面直角坐标系中,以表示具有相关关在平面直角坐标系中,以表示具有相关关系的两个变量的一组数据的图形系的两个变量的一组数据的图形2、最小二乘估计、最小二乘估计下的线性回归方程:下的线性回归方程:2)a,b 的意义是:以的意义是:以 a 为基数,为基数,x 每增加每增加1个单位,个单位,y相相应地平均增加应地平均增加 b 个单位个单位。1)称为样本点的中心称为样本点的中心。(1)(1)计算平均数计算平均数(2)(2)计算计算 与与 的积的积,求求(3)(3)计算计算(4)(4)将上述有关结果代入公式,求将上述有关结果代入公式,求b b、a a,写出回归直线方程写出回归直线方程 3、
3、求线性回归方程的步骤:、求线性回归方程的步骤:4、回归分析的基本步骤回归分析的基本步骤:A.画散点画散点图图B.求回归方求回归方程程C.用回归直线方程解决应用问题用回归直线方程解决应用问题求线性回归方程的步骤:求线性回归方程的步骤:(1)(1)计算平均数计算平均数(2)(2)计算计算 与与 的积的积,求求(3)(3)计算计算(4)(4)将上述有关结果代入公式,求将上述有关结果代入公式,求b b、a a,写写出回归直线方程出回归直线方程 相关性相关性1、在散点图中,点有一个集中的大致趋势、在散点图中,点有一个集中的大致趋势2、在散点图中,所有的点都在一条直线附近、在散点图中,所有的点都在一条直线
4、附近 波动线性相关。波动线性相关。xxxyyyOOO问题:有时散点图的各点并不集中在一条直线的附近,仍然可以按照求回归直线方程的步骤求回归直线,显然这样的回归直线没有实际意义。在怎样的情况下求得的回归直线方程才有实际意义?即建立的线性回归模型是否合理?如何对一组数据之间的线性相关程度作出定量分析?需要对需要对x,y的线性相关的线性相关性进行检验性进行检验 从散点图上可以看出,如果变量之间存在着某种关系,这些点会有从散点图上可以看出,如果变量之间存在着某种关系,这些点会有一个一个集中的大致趋势集中的大致趋势,这种趋势通常可以用,这种趋势通常可以用一条光滑的曲线一条光滑的曲线来近似描述,来近似描述
5、这种近似的过程称为这种近似的过程称为曲线拟合曲线拟合。在两个变量。在两个变量x x和和y y的散点图中,所有点看的散点图中,所有点看上去都在一条直线附近波动,则称变量间是上去都在一条直线附近波动,则称变量间是线性相关线性相关的。此时,我们可的。此时,我们可以用一条直线来拟合,这条直线叫以用一条直线来拟合,这条直线叫回归直线回归直线。xyO思考:思考:观察散点图的大致趋势,人的年龄的与人体脂观察散点图的大致趋势,人的年龄的与人体脂肪含量具有什么相关关系?肪含量具有什么相关关系?年龄与脂肪的散点图,从整体上看,它们是线性相关的年龄与脂肪的散点图,从整体上看,它们是线性相关的 思考思考2 2:在上
6、面的散点图中,这些点散布在从左下角在上面的散点图中,这些点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我到右上角的区域,对于两个变量的这种相关关系,我们将它称为们将它称为正相关正相关.一般地,如果两个变量成正相关,一般地,如果两个变量成正相关,那么这两个变量的变化趋势如何?那么这两个变量的变化趋势如何?思考思考3 3:如果两个变量成负相关,从整体上看这两个变如果两个变量成负相关,从整体上看这两个变量的变化趋势如何?其散点图有什么特点?量的变化趋势如何?其散点图有什么特点?一个变量随另一个变量的变大而变小,散点图中的点一个变量随另一个变量的变大而变小,散点图中的点散布在从左上角到右
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相关系数 课件
