中心对称图形PPT课件.ppt
《中心对称图形PPT课件.ppt》由会员分享,可在线阅读,更多相关《中心对称图形PPT课件.ppt(31页珍藏版)》请在三一文库上搜索。
1、这三个图形各自旋转这三个图形各自旋转180后都能与本身重合。后都能与本身重合。新课导入新课导入从图形变换的角度从图形变换的角度考虑,这些图形有考虑,这些图形有什么共同的特征?什么共同的特征?OOBACD对称中心是对称中心是 _,点点O点点A的对称点是的对称点是 _,点点D的对称点是的对称点是 _,点点C点点B 平行四边形平行四边形ABCD绕点绕点O旋转旋转180后,能与后,能与本身重合。本身重合。这一类图形本身关于这一类图形本身关于某点成中心对称。某点成中心对称。【知识与能力知识与能力】理解关于中心对称的两个图形是全等图形。理解关于中心对称的两个图形是全等图形。掌握这两个性质的运用。掌握这两个
2、性质的运用。了解中心对称图形及对称中心的概念及其它了解中心对称图形及对称中心的概念及其它们的应用。们的应用。能正确区分中心对称与中心对称图形。能正确区分中心对称与中心对称图形。教学目标教学目标 【过程与方法过程与方法】通过的观察、操作、讨论与思考使学生经历通过的观察、操作、讨论与思考使学生经历用图形的变换来描述现实生活的过程,领会类用图形的变换来描述现实生活的过程,领会类比和分类的数学思想。比和分类的数学思想。通过了解中心对称图形及对称中心的概念,通过了解中心对称图形及对称中心的概念,掌握其应用。掌握其应用。利用所学知识探索一个图形是中心对称图形,利用所学知识探索一个图形是中心对称图形,进一步
3、经历观察、讨论、操作、思考、归纳和进一步经历观察、讨论、操作、思考、归纳和应用等认识过程。应用等认识过程。【情感态度与价值观情感态度与价值观】通过对中心对称图形的了解,感受数学的美,通过对中心对称图形的了解,感受数学的美,激发学习热情。激发学习热情。通过观察等探究过程培养学生的合作与交流通过观察等探究过程培养学生的合作与交流的意识和探索精神。的意识和探索精神。对学生进行旋转思想的渗透。对学生进行旋转思想的渗透。中心对称的两条基本性质及其运用。中心对称的两条基本性质及其运用。中心对称图形的有关概念及其它们的运用。中心对称图形的有关概念及其它们的运用。区别关于中心对称的两个图形和中心对称图形。区别
4、关于中心对称的两个图形和中心对称图形。教学重难点教学重难点 把一个图形绕着某一个点旋转把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做那么这个图形叫做中心对称图形中心对称图形(central symmetry figure),这个点就是它的),这个点就是它的对称对称中心中心。知识要点知识要点OOBACD下列图形是中心对称图形吗?下列图形是中心对称图形吗?小练习小练习认真观察旋转认真观察旋转180后后都是中心对称图形。都是中心对称图形。图形的中心就是对称中心。图形的中心就是对称中心。都是中心对称图形。都是中心对称图形。
5、图形的中心就是对称中心。图形的中心就是对称中心。求证:具有对称中心的四边形是平行四边形。求证:具有对称中心的四边形是平行四边形。证明:证明:O是四边形是四边形ABCD的对称中心,的对称中心,根据中心对称性质,线段根据中心对称性质,线段AC、BD必过点必过点O,且且AO=CO,BO=DO,即四边形即四边形ABCD的对角线互相平分,的对角线互相平分,因此,因此,四边形四边形ABCD是平行四边形。是平行四边形。例题例题哪些是中心对称图形?哪些是中心对称图形?小练习小练习下面的牌中哪些是中心对称图形?下面的牌中哪些是中心对称图形?小练习小练习魔术师把魔术师把5张扑克牌放在桌子上,然后蒙住眼睛,请一张扑
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中心对称 图形 PPT 课件
