反铲式单斗液压挖掘机工作装置设计及其运动分析含全套CAD图纸.doc
《反铲式单斗液压挖掘机工作装置设计及其运动分析含全套CAD图纸.doc》由会员分享,可在线阅读,更多相关《反铲式单斗液压挖掘机工作装置设计及其运动分析含全套CAD图纸.doc(83页珍藏版)》请在三一文库上搜索。
1、目 录前言 1一、绪论2(一)国内外研究状况2(二)论文构成及研究内容2二、总体方案设计3(一)工作装置构成3(二)动臂及斗杆的结构形式5(三)动臂油缸与铲斗油缸的布置5(四)铲斗与铲斗油缸的连接方式5(五)铲斗的结构选择6(六)原始几何参数的确定7三、工作装置运动学分析8(一)动臂运动分析8(二)斗杆的运动分析10(三)铲斗的运动分析11(四)特殊工作位置计算15四、挖掘阻力分析18(一)转斗挖掘阻力计算18(二)斗杆挖掘阻力计算18五、基本尺寸的确定 20(一)斗形参数的确定20(二)动臂机构参数的选择201、 1与A点坐标的选取202、 l1与l2的选择203、 l41与l42的计算21
2、4、 l5的计算 21(三)动臂机构基本参数的校核 231、 动臂机构闭锁力的校核232、 满斗处于最大挖掘半径时动臂油缸提升力矩的校核253、 满斗处于最大高度时,动臂提升力矩的校核 26(四)斗杆机构基本参数的选择27(五)铲斗机构基本参数的选择281、 转角范围282、 铲斗机构其它基本参数的计算28六、工作装置结构设计 30(一)斗杆的结构设计301、斗杆的受力分析 302、斗杆内力图的绘制 353、 结构尺寸的计算37(二)动臂结构设计391、危险工况受力分析 422、内力图和弯矩图的求解 433、 结构尺寸的计算45(三)铲斗的设计471、铲斗斗形尺寸的设计 472、铲斗斗齿的结构
3、计算 473、 铲斗的绘制48七、销轴与衬套的设计 49(一)销轴的设计49(二)销轴用螺栓的设计49(三)衬套的设计49八、总结50九、参考文献 51十、致谢52附件一 外文翻译 53液压挖掘机工作装置结构设计及运动分析引 言挖掘机在国民经济建设的许多行业被广泛地采用,如工业与民用建筑、交通运输、水利电气工程、农田改造、矿山采掘以及现代化军事工程等等行业的机械化施工中。据统计,一般工程施工中约有60%的土方量、露天矿山中80%的剥离量和采掘量是用挖掘机完成的。随着我国基础设施建设的深入和在建设中挖掘机的广泛应用,挖掘机市场有着广阔的发展空间,因此发展满足我国国情所需要的挖掘机是十分必要的。而
4、工作装置作为挖掘机的重要组成部分,对其研究和控制是对整机开发的基础。反铲式单斗液压挖掘机工作装置是一个较复杂的空间机构,国内外对其运动分析、机构和结构参数优化设计方面都作了较深入的研究,具体的设计特别是中型挖掘机的设计已经趋于成熟。关于反铲式单斗液压挖掘机的相关文献也很多,这些文献从不同侧面对工作装置的设计进行了论述。而笔者的设计知识和水平还只是一个学步的孩子,进行本课题的设计是为对挖掘机的工作装置设计有一些大体的认识,掌握实际工程设计的流程、方法,巩固所学的知识和提高设计能力。一、绪论(一)国内外研究状况当前,国际上挖掘机的生产正向大型化、微型化、多能化和专用化的方向发展。国外挖掘机行业重视
5、采用新技术、新工艺、新结构和新材料,加快了向标准化、系列化、通用化发展的步伐。我国己经形成了挖掘机的系列化生产,近年来还开发了许多新产品,引进了国外的一些先进的生产率较高的挖掘机型号。由于使用性能、技术指标和经济指标上的优越,世界上许多国家,特别是工业发达国家,都在大力发展单斗液压挖掘机。目前,单斗液压挖掘机的发展着眼于动力和传动系统的改进以达到高效节能;应用范围不断扩大,成本不断降低,向标准化、模块化发展,以提高零部件、配件的可靠性,从而保证整机的可靠性;电子计算机监测与控制,实现机电一体化;提高机械作业性能,降低噪音,减少停机维修时间,提高适应能力,消除公害,纵观未来,单斗液压挖掘机有以下
6、的趋势:1、向大型化发展的同时向微型化发展。2、更为普遍地采用节能技术。3、不断提高可靠性和使用寿命。4、工作装置结构不断改进,工作范围不断扩大。5、由内燃机驱动向电力驱动发展。6、液压系统不断改进,液压元件不断更新。7、应用微电子、气、液等机电一体化综合技术。8、增大铲斗容量,加大功率,提高生产效率。9、人机工程学在设计中的充分利用。(二)论文构成及研究内容本论文主要对由动臂、斗杆、铲斗、销轴、连杆机构组成挖掘机工作装置进行设计。具体内容包括以下五部分:1、 挖机工作装置的总体设计。2、 挖掘机的工作装置详细的机构运动学分析。3、 工作装置各部分的基本尺寸的计算和验证。4、 工作装置主要部件
7、的结构设计。5、 销轴的设计及螺栓等标准件进行选型。二、总体方案设计(一)工作装置构成1-斗杆油缸;2- 动臂; 3-油管; 4-动臂油缸; 5-铲斗; 6-斗齿; 7-侧板;8-连杆; 9-曲柄: 10-铲斗油缸; 11-斗杆图2.1 工作装置组成图 图2.1为液压挖掘机工作装置基本组成及传动示意图,如图所示反铲工作装置由铲斗5、连杆9、斗杆11、动臂2、相应的三组液压缸1, 4,10等组成。动臂下铰点铰接在转台上,通过动臂缸的伸缩,使动臂连同整个工作装置绕动臂下铰点转动。依靠斗杆缸使斗杆绕动臂的上铰点转动,而铲斗铰接于斗杆前端,通过铲斗缸和连杆则使铲斗绕斗杆前铰点转动。挖掘作业时,接通回转
8、马达、转动转台,使工作装置转到挖掘位置,同时操纵动臂缸小腔进油使液压缸回缩,动臂下降至铲斗触地后再操纵斗杆缸或铲斗缸,液压缸大腔进油而伸长,使铲斗进行挖掘和装载工作。铲斗装满后,铲斗缸和斗杆缸停动并操纵动臂缸大腔进油,使动臂抬起,随即接通回转马达,使工作装置转到卸载位置,再操纵铲斗缸或斗杆缸回缩,使铲斗翻转进行卸土。卸完后,工作装置再转至挖掘位置进行第二次挖掘循环。在实际挖掘作业中,由于土质情况、挖掘面条件以及挖掘机液压系统的不同,反铲装置三种液压缸在挖掘循环中的动作配合可以是多样的、随机的。上述过程仅为一般的理想过程。挖掘机工作装置的大臂与斗杆是变截面的箱梁结构,铲斗是由厚度薄的钢板焊接而成
9、各油缸可看作是只承受拉压载荷的杆。根据以上特征,可以对工作装置进行适当简化处理。则可知单斗液压挖掘机的工作装置可以看成是由动臂、斗杆、铲斗、动臂油缸、斗杆油缸、铲斗油缸及连杆机构组成的具有三自由度的六杆机构,处理的具体简图如2.2所示。进一步简化得图如2.3所示。图2.2 工作装置结构简图1-铲斗;2-连杆;3-斗杆;4-动臂;5-铲斗油缸;6-斗杆油缸图2.3 工作装置结构简化图挖掘机的工作装置经上面的简化后实质是一组平面连杆机构,自由度是3,即工作装置的几何位置由动臂油缸长度L1、斗杆油缸长度L2、铲斗油缸长度L3决定,当L1、L2、L3为某一确定的值时,工作装置的位置也就能够确定。(二
10、动臂及斗杆的结构形式动臂采用整体式弯动臂,这种结构形式在小型挖掘机中应用较为广泛。其结构简单、价廉,刚度相同时结构重量较组合式动臂轻,且有利于得到较大的挖掘深度。斗杆也有整体式和组合式两种,大多数挖掘机采用整体式斗杆。在本设计中由于不需要调节斗杆的长度,故也采用整体式斗杆。(三)动臂油缸与铲斗油缸的布置动臂油缸装在动臂的前下方,动臂的下支承点(即动臂与转台的铰点)设在转台回转中心之前并稍高于转台平面,这样的布置有利于反铲的挖掘深度。大部分中小型液压挖掘机以反铲作业为主,常采用动臂支点靠前布置的方案。油缸活塞杆端部与动臂的铰点设在动臂箱体下底板的凸缘上,虽然这样会影响动臂的下降幅度,但不会削弱
11、动臂的结构强度,而且使动臂的受力更加合理。对于斗容量为0.25 m3的小型液压挖掘机,单只动臂液压缸即可满足工作要求。具体结构如图2.2所示。(四)铲斗与铲斗油缸的连接方式本方案中采用六连杆的布置方式,相比四连杆布置方式而言在相同的铲斗油缸行程下能得到较大的铲斗转角,改善了机构的传动特性。该布置中1杆与2杆的铰接位置虽然使铲斗的转角减少但保证能得到足够大的铲斗平均挖掘力。如图2.4所示。2331-斗杆; 2-连杆机构; 3-铲斗图2.4 铲斗连接布置示意图(五)铲斗的结构选择铲斗结构形状和参数的合理选择对挖掘机的作业效果影响很大,合适的铲斗应满足以下要求:1、有利于物料的自由流动。铲斗内壁不宜
12、设置横向凸缘、棱角等。斗底的纵向剖面形状要适合于各种物料的运动规律。2、要使物料易于卸尽。3、为使装进铲斗的物料不易于卸出,铲斗的宽度与物料的粒径之比应大于4,大于50时,颗粒尺寸不考虑,视物料为均质。综上考虑,选用小型挖掘机常用的铲斗结构,基本结构如图2.5所示。图2.5 铲斗斗齿的安装连接采用橡胶卡销式,结构示意图如2.6所示。1-卡销 ;2 橡胶卡销;3 齿座; 4斗齿图2.6 卡销式斗齿结构示意图(六) 原始几何参数的确定1、动臂与斗杆的长度比K1由于所设计的挖掘机适用性较强,作业对象明确,一般不替换工作装置,故取中间比例方案,K1取在1.52.0之间。考虑到K1值大,工作装置结构重心
13、离机体近。初步选取K1=2,即l1 / l2=2。2、铲斗斗容与主参数的选择斗容量在任务书中已经给出:q =0.25 m3按经验公式和比拟法初选:l3=900mm,铲斗平均宽度B=800mm,铲斗切削半径R= l3=900mm,铲斗装满转角。3、工作装置液压系统主参数的初步选择各工作油缸的缸径选择要考虑到液压系统的工作压力和“三化“要求。初选动臂油缸内径D1=125mm,活塞杆的直径d1=80mm。斗杆油缸的内径D2=90mm,活塞杆的直径d2=63mm。铲斗油缸的内径D3=100mm,活塞杆的直径d3=70mm。按经验公式初选各油缸全伸长度与全缩长度之比:1=2=3=1.6。参照任务书的要求
14、选择工作装置液压系统的工作压力P=20MPa,闭锁压力Pg=21MPa。三、工作装置运动学分析(一) 动臂运动分析动臂油缸的最短长度;动臂油缸的伸出的最大长度;A:动臂油缸的下铰点;B:动臂油缸的上铰点;C:动臂的下铰点.图3.1 动臂摆角范围计算简图动臂摆角1是L1的函数。动臂上任意一点在任一时刻的坐标值也都是L1的函数。如图3.1所示,图中动臂油缸的最短长度;动臂油缸的伸出的最大长度;动臂油缸两铰点分别与动臂下铰点连线夹角的最小值;动臂油缸两铰点分别与动臂下铰点连线夹角的最大值;A:动臂油缸的下铰点;B:动臂油缸的上铰点;C:动臂的下铰点。则有:在三角形ABC中: (3-1)图3.2 F、
15、C点坐标计算简图在三角形BCF中: (3-2)由图3.2所示的几何关系,可得到21的表达式: (3-3)当F点在水平线CU之下时21为负,否则为正。F点的坐标为 XF = l30+l1cos21 YF = l30+l1sin21 (3-4)C点的坐标为 YC = YA+l5sin11 (3-5)动臂油缸的力臂e1 (3-6)显然动臂油缸的最大作用力臂e1max= l5(二)斗杆的运动分析如下图3.3所示,D点为斗杆油缸与动臂的铰点点,F点为动臂与斗杆的铰点,E点为斗杆油缸与斗杆的铰点。斗杆的位置参数是l2,这里只讨论斗杆相对于动臂的运动,即只考虑L2的影响。D-斗杆油缸与动臂的铰点点; F-动
16、臂与斗杆的铰点;E-斗杆油缸与斗杆的铰点; 2-斗杆摆角.图3.3 斗杆机构摆角计算简图在三角形DEF中 (3-7)由上图的几何关系知斗杆相对于动臂的摆角范围2max2max =2 max-2min (3-8)则斗杆的作用力臂 (3-9)显然斗杆的最大作用力臂e2max = l9,此时。(三)铲斗的运动分析铲斗相对于XOY坐标系的运动是L1、L2、L3的函数,现讨论铲斗相对于斗杆的运动,如图3-4所示,G点为铲斗油缸与斗杆的铰点,F点为斗杆与动臂的铰点Q点为铲斗与斗杆的铰点,v点为铲斗的斗齿尖点,K点为连杆与铲斗的饺点,N点为曲柄与斗杆的铰点,M点为铲斗油缸与曲柄的铰点,H点为曲柄与连杆的铰点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 反铲式单斗 液压 挖掘机 工作 装置 设计 及其 运动 分析 全套 CAD 图纸
