卷积神经网络报告.ppt
《卷积神经网络报告.ppt》由会员分享,可在线阅读,更多相关《卷积神经网络报告.ppt(14页珍藏版)》请在三一文库上搜索。
1、卷积神经网络介绍 A n n u a l R e p o r t汇报人:龚志雄受Hubel和Wiesel对猫视觉皮层电生理研究启发,有人提出卷积神经网络(CNN),Yann Lecun 最早将CNN用于手写数字识别并一直保持了其在该问题的霸主地位。与普通神经网络的区别在于,卷积神经网络增加了卷积层和池化层的概念。单击添加标题,建议您在展示时采用微软雅黑字体单击此处编辑内容单击添加标题,建议您在展示时采用微软雅黑体单击此处辑内容卷积神经网络概述传统的BP网络包括输入层、隐藏层、输出层。下面的CNN网络以一张图片作为输入,先经过卷积层得到C1,再经过池化层得到S1,再经过卷积层得到C2,再经过池化
2、层得到S2。将S2的所有图片展开生成X,之后连接上普通的全连接神经网络进行图片的分类。需要注意的是S1到C2的的连接,C2层的每个神经元只是部分与S1层的神经元连接,而传统的BP网络中每个神经元会与上一层的所有神经元进行连接。单击添加标题,建议您在展示时采用微软雅黑字体单击此处编辑内容单击添加标题,建议您在展示时采用微软雅黑体单击此处辑内容传统的BP网络和CNN网络的区别单击添加标题,建议您在展示时采用微软雅黑字体单击此处编辑内容单击添加标题,建议您在展示时采用微软雅黑体单击此处辑内容卷积的过程左边是被卷积图片的像素显示,其中的数字代表每个像素点的像素值。中间的小图片就是卷积核,卷积核会从图片
3、的左上角开始从左到右从上到下的进行卷积操作,每一次的卷积操作如右图所示:卷积核里的每个值与其对应位置的图片像素值相乘,再将所有相乘的结果求和就得到了结果。卷积核中的参数值最开始是随即生成的,CNN网络训练的目的就是训练卷积核里的这些参数,这些参数相当于BP网络中的权重w。单击添加标题,建议您在展示时采用微软雅黑字体单击此处编辑内容单击添加标题,建议您在展示时采用微软雅黑体单击此处辑内容卷积的过程右图是一个卷积的动态过程,黄色区域就是卷积核,右下角的小数字是卷积核的参数,这里卷积核的移动步长是一个单位。若原图尺寸为a*a,卷积核尺寸为b*b,则卷积操作生成的图片尺寸为(a-b+1)*(a-b+1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 卷积 神经网络 报告
