最新高中数学知识梳理正弦余弦定理及解三角形提高.doc
《最新高中数学知识梳理正弦余弦定理及解三角形提高.doc》由会员分享,可在线阅读,更多相关《最新高中数学知识梳理正弦余弦定理及解三角形提高.doc(11页珍藏版)》请在三一文库上搜索。
1、正弦、余弦定理及解三角形编稿:李霞 审稿:孙永钊【考纲要求】1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.【知识网络】应用解三角形正弦定理余弦定理【考点梳理】要点一、三角形中的边与角之间的关系约定:的三个内角、所对应的三边分别为、.1边的关系:(1) 两边之和大于第三边:,;两边之差小于第三边:,;(2) 勾股定理:中,.2角的关系:中,,=(1)互补关系:(2)互余关系:3直角三角形中的边与角之间的关系中,(如图),有:,.要点二、正弦定理、余弦定理1.正弦定理:在个三角形中,各边和它所对角的正
2、弦的比相等即:(为的外接圆半径)2. 余弦定理:三角形任意一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。即: 要点诠释:(1)正弦定理适合于任何三角形;每个等式可视为一个方程:知三求一.(2)利用正弦定理可以解决下列两类三角形的问题: 已知两个角及任意边,求其他两边和另一角; 已知两边和其中边的对角,求其他两个角及另一边.(3)利用余弦定理可以解决下列两类三角形的问题:已知三角形的两条边及夹角,求第三条边及其他两个角;已知三角形的三条边,求其三个角.(4) 利用余弦定理判断三角形形状:勾股定理是余弦定理的特殊情况,.在中,所以为锐角;若,同理可得角、为锐角.当,都成立时,
3、为锐角三角形在中,若,所以为钝角,则是钝角三角形同理:若,则是钝角三角形且为钝角; 若,则是钝角三角形且为钝角要点三、解斜三角形的类型1.已知两角一边,用正弦定理,有解时,只有一解.2.已知两边及其一边的对角,用正弦定理,有解的情况可分为以下情况,在中,已知和角时,解的情况如下: (1)若A为锐角时:如图:(2)若A为直角或钝角时:3.已知三边,用余弦定理有解时,只有一解.4.已知两边及夹角,用余弦定理,必有一解.要点诠释:1在利用正弦定理理解已知三角形的两边和其中一边的对角,求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解或无解情况,应结合图形并根据“三角形中大边对大角”来判断
4、解的情况,作出正确取舍.2在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转化为角角关系或边边关系,再用三角变换或代数式的恒等变换(如因式分解、配方等)求解,注意等式两边的公因式不要约掉,要移项提取公因式,否则会漏掉一种形状的可能要点四、三角形面积公式 1(表示边上的高);2;3;4;5. 要点五、实际问题中的常用角1. 仰角和俯角与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角,如图所示:2.方位角:一般指正北方向线顺时针到目标方向线的水平角. 方位角的取值范围为0360.如图,点的方位角是。3. 坡角
5、和坡度坡面与地平面所成的角度,叫做坡角;坡面的铅直高度和水平宽度的比叫做坡度或者坡比,常用字母i表示。坡比是坡角的正切值。【典型例题】类型一、利用正弦、余弦定理解三角形【高清课堂:正、余弦定理及解三角形401223 例1】例1. 在ABC中,AB2,AC3,则BC()A. B. C D. 【思路点拨】画出示意图,注意向量数量积的夹角是.【答案】A【解析】, ,,由余弦定理有,从而BC.【总结升华】本题主要考查余弦定理以及三角形中有关的向量和三角函数的应用.举一反三:【变式1】如图,在ABC中,D是边AC上的点,且AB=AD,BC=2BD,则sinC的值为( )A B C D【答案】D【解析】设
6、BD=1,则,BC=2.在ABC中,解得,在ABC中,由正弦定理,得,故选D.【变式2】在ABC中,内角A,B,C的对边分别是a,b,c。若,则A=( )A30 B60 C120 D150【答案】A【解析】,在ABC中,A=30.【变式3】已知ABC的三边长分别为AB=7,BC=5,CA=6,则的值为_【答案】【解析】由余弦定理可求得,.例2. 在中,试确定满足下列条件的三角形的形状。(1); (2);(3),且.【思路点拨】(1)考虑用正弦定理将边化为角;(2)正弦、余弦定理都可以选用;(3)由可以先化简,再考虑用余弦定理.【解析】(1)由得,整理得:即,同理可得,所以为等边三角形.(2)方
7、法一:化边为角由正弦定理得:即,即 或,即或故为等腰三角形或直角三角形。方法二:化角为边由余弦定理得整理得:,即或故为等腰三角形或直角三角形。(3) 即, 又 ,即即 故是正三角形.【总结升华】依据正、余弦定理定理的结构特点,若在式子中出现的为与边相关的一次式,则一般多用正弦定理,如果利用余弦定理,将角的关系转化为边的关系,则需要有较高的恒等变形能力(比如第2小题);若在式子中出现的为与边相关的二次式,则一般多用余弦定理.举一反三:【变式1】已知ABC中,bsinB=csinC,且,试判断三角形的形状【答案】为等腰直角三角形【解析】bsinB=csinC,由正弦定理得 sinB=sinC, s
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 高中数学 知识 梳理 正弦 余弦 定理 三角形 提高
