机械专业外文文献翻译外文翻译压力容器技术进展.doc
《机械专业外文文献翻译外文翻译压力容器技术进展.doc》由会员分享,可在线阅读,更多相关《机械专业外文文献翻译外文翻译压力容器技术进展.doc(11页珍藏版)》请在三一文库上搜索。
1、英文原文The Achievements on the Technology of the Pressure VesselsAbstractRecently European and U.S have issued their pressure equipment codes. Especially in the pressure vessel code, The EN 13445 from European and the ASME VIII-2 2007 from U.S significantly changed the technical contents and hand out t
2、he new design model and the methods on the foundation of a grand scale research. Key Words Pressure Vessels Technology ProgressA. IntroductionNow the whole world has entered a period of economy globalization. Standard internationalization is an inexorable trend of economic globalization. The charact
3、eristics of development trend of current standard technology are as follows:1. Design method against failure mode;2. Widely application of computer technology;3. More economic construction methods;4. Technical specification which reflected comprehensive construction technology;5. More wide applicati
4、on range of product specification.6. To seek national competitive capacity in international trade.B. Development in Pressure Vessel Design Technology1. Technology Development in Materials Used for Pressure VesselsIn recent years, It is obvious, that the pressure vessel products are getting larger an
5、d larger and with high technical references. Nowadays, the main research achievement and technical progress in pressure vessel materials are as follows:2. Development in Design TechnologyModern structure design for pressure vessel is getting rid of the traditional concept step by step, to reflect th
6、e design concept with can satisfy technology requirement. In the view of failure mode, under the prerequisite of safety, actual result, safety and economic benefit are combined harmoniously. (1)Design Method in Accordance With Failure Mode: Synthesizing the technical standard of main industrial coun
7、tries in the world, consulting the content of European standards, the international standard ISO 16528 classifies the common failure modes of boilers and pressure vessels into 3 classes and 14 kinds, that clearly defines the design technical application concept against failure modes:Short term failu
8、re modes:l Brittle fracturel Ductile rupturel Leakage at joints due to excessive deformationsl Crack formation or ductile tearing due to excessive local strainsl Instability elastic, plastic or elastic-plasticLong term failure modes:l Creep Rupturel Creep - excessive deformations at mechanical joint
9、s or resulting in unacceptable transfer of loadl Creep instabilityl Erosion, corrosionl Environmentally assisted cracking e.g. stress corrosion cracking, hydrogen induced cracking, etcCyclic failure modes:l Progressive plastic deformationl Alternating plasticityl Fatigue under elastic strains (mediu
10、m and high cycle fatigue) or under elastic-plastic strains (low cycle fatigue)For pressure equipment standard, at least the following failure modes must be considered in definition of design criterion and methods:l Brittle fracturel Ductile rupturel Leakage at jointsl Elastic or plastic instability
11、2)Complicate Constitutive Relationship and StructureAlong with the rapid development of computer capacity, now the pressure vessel design technology already can solve the problems about very complicate constitutive relationship or engineering with complicate structure. such as:l Materials with diff
12、erent specification in different direction: composite materials, fiber winding pressure equipment;l Combined structure analysis design: closed structure combined by flanges, gaskets and bolts, contact of multilaminate shells; l Buckling and back buckling of complicate structure: stability analysis o
13、f large poles and combined structure of shell; l Dynamic response of combined structure: earthquake response, piping vibration fluid inducting vibration, etc. (3) Large-Scale Numerical Value AnalysisTraditional computer aided design (CAD) has already transited into Computer aided engineering (CAE) s
14、tep by step. (4) Analysis of Multi-Physical Field CouplingFor modern pressure equipment, the interaction between fluid and solid must be solved exactly, at the same time, thermal analysis and impact analysis are indispensable technical methods. Therefore, the following problems must be solved too:l
15、Coupling of fluid and solid: large vessels, transportation tanks, flowing inside pipingl Multi phase flowing: boiler combustion, combustion and reflection of fluidized bed l Heat transfer and medium: plate heat exchanger, efficiency of column plate, efficiency of distributor.l Impact load: water-ham
16、mer phenomenon, impact(5) Method to Change Safety CoefficientIn order to increase the competition of home made products, it is a universal trend for countries and regions all over the world to decrease the safety coefficient. The US standard (ASME) and European unified standard for pressure vessels
17、under making) also decreased relative safety coefficient. In ASME Code Sec. VIII Div. 1 (2007 edition) nb has been decreased to 3.5 from 4.0. And in ASME Code Sec. VIII Div. 2 (2007 edition) nb has been decreased to 2.4 from 3.04. While the minimum value of nb in European unified standard for press
18、ure vessels is 1.875. In Chinese new edition of Safety Technology Supervision Rules for Pressure Vessel , safety coefficient has been decreased to 2.7. from 3.05, safety coefficient nb designed in accordance with analysis design method has been decreased to 2.4 from 2.6, the relative technical stand
19、ard GB 150 and JB 4732 will be adjusted too. (6) Structure Change Due to Safety ConceptIn modern pressure vessel design, the designers have to consider not only safety and technology requirement but also environment protection and saving resources.C. Developing Trend of International Pressure Equipm
20、ent Standard Technology The developing trend of international pressure equipment standard technology has the following feathers:1. Coordination between Technical Rules and Technical Standards: State technical rules are mandatory rules established by the government to guarantee the safety of pressure
21、 vessels products, products within its jurisdiction have to obey its safety principles, while technical standards are recommended, they stipulate relative technical index for products quality to guarantee the safety of pressure vessels products. but the technical index stipulated by the standards mu
22、st be in accordance with safety principles of the rules. Technical standards may be used to guide design, construction, inspection and acceptance of pressure vessels, they are the platform of technical assessment between pressure vessel product construction and trade. 2. Research for Basic Propertie
23、s of Pressure Vessel Materials: (1) Low Temperature Impact Properties: to research the laws of materials low temperature impact properties influenced by materials size, conditions, thickness and stress state, to arise the determining method of allowed lowest design metal temperature (MDMT) for Chine
24、se technical standard in accordance with the performance of Chinese materials and rules of breaking mechanics (2) Chart for Determining Shell Thickness of Components under External Pressure: to study stress-stain relationship of pressure vessel materials in common use., to establish calculating meth
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机械 专业 外文 文献 翻译 压力容器 技术 进展
