二次曲线方程的化简与应用.doc
《二次曲线方程的化简与应用.doc》由会员分享,可在线阅读,更多相关《二次曲线方程的化简与应用.doc(13页珍藏版)》请在三一文库上搜索。
1、山西师范大学现代文理学院(数计系)毕业论文论文题目:二次曲线方程的化简与应用学生姓名: 刘彦雪 学 号: 1290110415 专 业: 数学与应用数学 班 级: 1204班 指导教师: 范青龙 二零一四年十一月四号目 录摘 要2(一)、二次曲线的相关定义2(二)、平面直角坐标变换32.1二次曲线方程的化简与分类3 2.2 利用系数的影响规律化简方程4 (三)、应用举例7 (四)、结束语10参考文献1111 二次曲线方程的化简与应用刘彦雪摘要 二次曲线方程的化简是二次曲线理论的重要内容,是教学的一个难点,这方面的研究文献较多,分别总结出很多有效的方法。文献给出了通过对二次曲线方程配方变形、直角
2、坐标变换对二次曲线方程进行分类、化简;然后根据直线与二次曲线相交时参数t的几何意义,确定二次曲线的标准方程.从而解决了利用坐标系的平移,旋转对二次曲线方程分类,化简时运算复杂或无法确定图形具体位置等问题.本论文首先对定义进行归纳总结,运用验证类比以及大量的举例对二次曲线化简作了说明,其次给出了一些方法和过程及证明,然后作出了归纳总结。 关键词 定义; 二次曲线; 平面直角坐标变换 (一)、相关定义 1.1.在平面上,由二元二次方程 所表示的曲线,叫做二次曲线. 1.2 有唯一中心的二次曲线叫做中心二次曲线;没有中心的二次曲线叫做无心二次曲线;有一条中心直线的二次曲线叫做线心二次曲线.无心二次曲
3、线与线心二次曲线统称为非中心二次曲线. 1.3 把一个点对于某一坐标系的坐标变换称为同一个点对于另一种坐标系的坐标,这种变换称为坐标变换. 1.4 由曲线方程的系数给出的函数,如果在经过任意一个直角坐标变换后,它的函数值不变,就称这个函数是该曲线的一个正交不变量,简称不变量. 1.5 二次曲线的垂直于其共轭弦的直径叫做二次曲线的主直径。(二)、平面直角坐标变换 二次曲线F(x,y)=0经过仿射变换,的仿射对应的图形仍为同类型的二次曲线,并且二次曲线的中心在仿射变换下还是二次曲线的中心。在平面直角坐标系中,利用坐标变换,是二次曲线的方程在新坐标系里具有最简形式,然后进行二次分类。 2、1二次曲线
4、方程的化简与分类 在一般情况下,由旧坐标系变为新坐标系需要分两步来完成,则二次曲线方程(*)在移轴公式为,其中表示平面内一点的旧坐标,表示点的新坐标, 表示新坐标系的原点在旧坐标系下的坐标,则二次曲线方程(*)在转轴公式为,其中, 为坐标轴的旋转角.在转轴下,二次曲线的新方程为F(),这里。因此,在转轴为下, 二次曲线方程系数的变化规律为:1) 二次项系数不变;2) 一次项系数变为,;3) 常数项变为 因为当()为二次曲线的中心时有,所以,当二次曲线有中心时, 做移轴,使原点与二次曲线的中心重合,那么在新坐标下二次曲线的新方程中一次项消失。则,新方程为,这里.因此,由此可知系数变化规律为:1)
5、 二次项系数的变化仅与原方程的二次项系数和转角有关;2) 一次项系数的变化仅与原方程的一次项系数和转角有关,特别是,当原方程无一次项时,转轴后也无一次项;3) 常数项不变. 2.2 利用系数的影响规律化简方程当时,二次曲线为中心二次曲线,其中心满足根据移轴对二次曲线方程系数的影响规律,若取为坐标原点,则二次曲线方程可化简为:其中由此可知中心二次曲线的化简一般是先移轴后转轴.当时,即(*)为非中心二次曲线,如果时,取转角满足, 使得 从而消去方程中的交叉项,由此可知非中心二次曲线的化简一般是先转轴后移轴. 注意:利用坐标变化化简二次曲线的方程,如果曲线有中心,那么为了计算方便,往往先移轴再转轴。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次曲线 方程 应用
