初中数学阿氏圆最值模型归纳.doc
《初中数学阿氏圆最值模型归纳.doc》由会员分享,可在线阅读,更多相关《初中数学阿氏圆最值模型归纳.doc(13页珍藏版)》请在三一文库上搜索。
1、几何模型:阿氏圆最值模型【模型来源】“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k1),则满足条件的所有的点P的轨迹构成的图形为圆这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.【模型建立】如图 1 所示,O 的半径为R,点 A、B 都在O 外 ,P为O上一动点,已知R=OB,连接 PA、PB,则当“PA+PB”的值最小时,P 点的位置如何确定? 解决办法:如图2,在线段 OB 上截取OC使 OC=R,则可说明BPO与PCO相似,则有PB=PC。故本题求“PA+PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当
2、A、P、C 三点共线时,“PA+PC”值最小。【技巧总结】计算的最小值时,利用两边成比例且夹角相等构造母子型相似三角形精品.问题:在圆上找一点P使得的值最小,解决步骤具体如下:1. 如图,将系数不为1的线段两端点与圆心相连即OP,OB2. 计算出这两条线段的长度比3. 在OB上取一点C,使得,即构造POMBOP,则,4. 则,当A、P、C三点共线时可得最小值典题探究 启迪思维 探究重点例题1. 如图,在RtABC中,C=90,AC=4,BC=3,以点C为圆心,2为半径作圆C,分别交AC、BC于D、E两点,点P是圆C上一个动点,则的最小值为_ 【分析】这个问题最大的难点在于转化,此处P点轨迹是圆
3、注意到圆C半径为2,CA=4,连接CP,构造包含线段AP的CPA,在CA边上取点M使得CM=2,连接PM,可得CPACMP,故PA:PM=2:1,即PM=问题转化为PM+PBBM最小值,故当B,P,M三点共线时得最小值,直接连BM即可得变式练习1如图1,在RTABC中,ACB=90,CB=4,CA=6,圆C的半径为2,点P为圆上一动点,连接AP,BP,求,的最小值.精品. 答案:=,=2,=,=.例题2. 如图,点C坐标为(2,5),点A的坐标为(7,0),C的半径为,点B在C上一动点,的最小值为_.答案:5.变式练习2如图,在平面直角坐标系xoy中,A(6,-1),M(4,4),以M为圆心
4、为半径画圆,O为原点,P是M上一动点,则PO+2PA的最小值为_.精品.答案:10.例题3. 如图,半圆的半径为1,AB为直径,AC、BD为切线,AC1,BD2,P为上一动点,求PC+PD的最小值【解答】解:如图当A、P、D共线时,PC+PD最小理由:连接PB、CO,AD与CO交于点M,ABBD4,BD是切线,ABD90,BADD45,AB是直径,APB90,PABPBA45,PAPB,POAB,ACPO2,ACPO,四边形AOPC是平行四边形,OAOP,AOP90,四边形AOPC是正方形,PMPC,PC+PDPM+PDDM,DMCO,此时PC+DP最小ADAM2变式练习3如图,四边形ABC
5、D为边长为4的正方形,B的半径为2,P是B上一动点,则PD+PC的最小值为5;PD+4PC的最小值为10精品.【解答】解:如图,连接PB、在BC上取一点E,使得BE1PB24,BEBC4,PB2BEBC,PBECBE,PBECBE,PD+PCPD+PE,PE+PDDE,在RtDCE中,DE5,PD+PC的最小值为5连接DB,PB,在BD上取一点E,使得BE,连接EC,作EFBC于FPB24,BEBD44,BP2BEBD,PBEPBD,PBEDBP,PEPD,PD+4PC4(PD+PC)4(PE+PC),PE+PCEC,在RtEFC中,EF,FC,EC,PD+4PC的最小值为10故答案为5,10
6、例题4. 如图,已知正方ABCD的边长为6,圆B的半径为3,点P是圆B上的一个动点,则的最大值为_【分析】当P点运动到BC边上时,此时PC=3,根据题意要求构造,在BC上取M使得此时PM=精品.,则在点P运动的任意时刻,均有PM=,从而将问题转化为求PD-PM的最大值连接PD,对于PDM,PD-PMDM,故当D、M、P共线时,PD-PM=DM为最大值变式练习4(1)如图1,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD的最大值为(2)如图2,已知菱形ABCD的边长为4,B60,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为,PD的
7、最大值为 图1 图2【解答】解:(1)如图3中,在BC上取一点G,使得BG4,PBGPBC,PBGCBP,PGPC,PD+PCDP+PG,DP+PGDG,当D、G、P共线时,PD+PC的值最小,最小值为DGPDPCPDPGDG,当点P在DG的延长线上时,PDPC的值最大,最大值为DG故答案为,精品.(2)如图4中,在BC上取一点G,使得BG1,作DFBC于F2,2,PBGPBC,PBGCBP,PGPC,PD+PCDP+PG,DP+PGDG,当D、G、P共线时,PD+PC的值最小,最小值为DG,在RtCDF中,DCF60,CD4,DFCDsin602,CF2,在RtGDF中,DGPDPCPDPG
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 阿氏圆最值 模型 归纳
