高中数学复习专题讲座指数函数对数函数.doc
《高中数学复习专题讲座指数函数对数函数.doc》由会员分享,可在线阅读,更多相关《高中数学复习专题讲座指数函数对数函数.doc(7页珍藏版)》请在三一文库上搜索。
1、高中数学复习专题讲座指数函数、对数函数高考要求 指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题 重难点归纳 (1)运用两种函数的图象和性质去解决基本问题 此类题目要求考生熟练掌握函数的图象和性质并能灵活应用 (2)综合性题目 此类题目要求考生具有较强的分析能力和逻辑思维能力 (3)应用题目 此类题目要求考生具有较强的建模能力 典型题例示范讲解 例1已知过原点O的一条直线与函数y=log8x的图象交于A、B两点,分别过点A、B作y轴的平行线与函数y=log2x的图象交于C、D两点 (1)证明 点C、D和原点O在同一条直
2、线上;(2)当BC平行于x轴时,求点A的坐标 命题意图 本题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查学生的分析能力和运算能力 知识依托 (1)证明三点共线的方法 kOC=kOD (2)第(2)问的解答中蕴涵着方程思想,只要得到方程(1),即可求得A点坐标 错解分析 不易考虑运用方程思想去解决实际问题 技巧与方法 本题第一问运用斜率相等去证明三点共线;第二问运用方程思想去求得点A的坐标 (1)证明 设点A、B的横坐标分别为x1、x2,由题意知 x11,x21,则A、B纵坐标分别为log8x1,log8x2 因为A、B在过点O的直线上,所以,点C、D坐标分别为(x1,
3、log2x1),(x2,log2x2),由于log2x1=3log8x2,所以OC的斜率 k1=,OD的斜率 k2=,由此可知 k1=k2,即O、C、D在同一条直线上 (2)解 由BC平行于x轴知 log2x1=log8x2 即 log2x1=log2x2,代入x2log8x1=x1log8x2得x13log8x1=3x1log8x1,由于x11知log8x10,x13=3x1 又x11,x1=,则点A的坐标为(,log8) 例2在xOy平面上有一点列P1(a1,b1),P2(a2,b2),Pn(an,bn),对每个自然数n点Pn位于函数y=2000()x(0a1)的图象上,且点Pn,点(n,
4、0)与点(n+1,0)构成一个以Pn为顶点的等腰三角形 (1)求点Pn的纵坐标bn的表达式;(2)若对于每个自然数n,以bn,bn+1,bn+2为边长能构成一个三角形,求a的取值范围;(3)设Cn=lg(bn)(nN*),若a取(2)中确定的范围内的最小整数,问数列Cn前多少项的和最大?试说明理由 命题意图 本题把平面点列,指数函数,对数、最值等知识点揉合在一起,构成一个思维难度较大的综合题目,本题主要考查考生对综合知识分析和运用的能力 知识依托 指数函数、对数函数及数列、最值等知识 错解分析 考生对综合知识不易驾驭,思维难度较大,找不到解题的突破口 技巧与方法 本题属于知识综合题,关键在于读
5、题过程中对条件的思考与认识,并会运用相关的知识点去解决问题 解 (1)由题意知 an=n+,bn=2000() (2)函数y=2000()x(0abn+1bn+2 则以bn,bn+1,bn+2为边长能构成一个三角形的充要条件是bn+2+bn+1bn,即()2+()10,解得a5(1) 5(1)a10 (3)5(1)a10,a=7bn=2000() 数列bn是一个递减的正数数列,对每个自然数n2,Bn=bnBn1 于是当bn1时,BnBn1,当bn1时,BnBn1,因此数列Bn的最大项的项数n满足不等式bn1且bn+1;(3)若F(x)的反函数F1(x),证明 方程F1(x)=0有惟一解 解 (
6、1)由0,且2x0得F(x)的定义域为(1,1),设1x1x21,则F(x2)F(x1)=()+(),x2x10,2x10,2x20,上式第2项中对数的真数大于1 因此F(x2)F(x1)0,F(x2)F(x1),F(x)在(1,1)上是增函数 (2)证明 由y=f(x)=得 2y=,f1(x)=,f(x)的值域为R,f-1(x)的定义域为R 当n3时,f-1(n) 用数学归纳法易证2n2n+1(n3),证略 (3)证明 F(0)=,F1()=0,x=是F1(x)=0的一个根 假设F1(x)=0还有一个解x0(x0),则F-1(x0)=0,于是F(0)=x0(x0) 这是不可能的,故F-1(x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 复习 专题讲座 指数函数 对数 函数
