机械专业外文文献翻译外文翻译机械运动和动力学.doc
《机械专业外文文献翻译外文翻译机械运动和动力学.doc》由会员分享,可在线阅读,更多相关《机械专业外文文献翻译外文翻译机械运动和动力学.doc(12页珍藏版)》请在三一文库上搜索。
1、附录Kinematics and dynamics of machineryOne princple aim of kinemarics is to creat the designed motions of the subject mechanical parts and then mathematically compute the positions, velocities ,and accelerations ,which those motions will creat on the parts. Since ,for most earthbound mechanical syste
2、ms ,the mass remains essentially constant with time,defining the accelerations as a function of time then also defines the dynamic forces as a function of time. Stress,in turn, will be a function of both applied and inerials forces . since engineering design is charged with creating systems which wi
3、ll not fail during their expected service life,the goal is to keep stresses within acceptable limits for the materials chosen and the environmental conditions encountered. This obvisely requies that all system forces be defined and kept within desired limits. In mechinery , the largest forces encoun
4、tered are often those due to the dynamics of the machine itself. These dynamic forces are proportional to acceletation, which brings us back to kinematics ,the foundation of mechanical design. Very basic and early decisions in the design process invovling kinematics wii prove troublesome and perform
5、 badly. Any mechanical system can be classified according to the number of degree of freedom which it possesses.the systems DOF is equal to the number of independent parameters which are needed to uniquely define its posion in space at any instant of time. A rigid body free to move within a referenc
6、e frame will ,in the general case, have complex motoin, which is simultaneous combination of rotation and translation. In three-dimensional space , there may be rotation about any axis and also simultaneous translation which can be resoled into componention along three axes, in a plane ,or two-dimen
7、tional space ,complex motion becomes a combination of simultaneous along two axes in the plane. For simplicity ,we will limit our present discusstions to the case of planar motion: Pure rotation the body pessesses one point (center of rotation)which has no motion with respect to the stationary frame
8、 of reference. All other points on the body describe arcs about that center. A reference line drawn on the body through the center changes only its angulai orientation.Pure translation all points on the body describe parallel paths. A reference line drawn on the body changes its linear posion but do
9、es not change its angular oriention. Complex motion a simulaneous combination of rotion and translationm . any reference line drawn on the body will change both its linear pisition and its angular orientation. Points on the body will travel non-parallel paths ,and there will be , at every instant ,
10、a center of rotation , which will continuously change location. Linkages are the bacis building blocks of all mechanisms. All common forms of mechanisms cams , gears ,belts , chains are in fact variations of linkages. Linkages are made up of links and kinematic pairs. A link is an (assumed)rigid bod
11、y which possesses at least two or more links (at their nodes), which connection allows some motion, or potential motion,between the connected links. The term lower pair is used ti describe jionts with surface contact , as with a pin surrounded by a hole. The term higher pair is used to describe jion
12、ts with point or line contact ,but if there is any clerance between pin and hole (as there must be for motion ),so-called surface contact in the pin jiont actually becomes line contact , as the pin contacts actually has contact only at discrete points , which are the tops of the surfaces asperities.
13、 The main practical advantage of lower pairs over higher pairs is their better ability to trap lubricant between their envloping surface. This ie especially true for the rotating pin joint. The lubricant is more easily squeezed out of a higher pair .as s result , the pin joint is preferred for low w
14、ear and long life . When designing machinery, we must first do a complete kinematic analysis of our design , in order to obtain information about the acceleration of the moving parts .we next want te use newtons second law to caculate the dynamic forces, but to do so we need to know the masses of al
15、l the moving parts which have these known acceletations. These parts do not exit yet ! as with any design in order to make a first pass at the caculation . we will then have to itnerate to better an better solutions as we generate more information. A first estimate of your parts masses can be obtain
16、ed by assuming some reasonable shapes and size for all the parts and choosing approriate materials. Then caculate the volume of each part and multipy its volume by materials mass density (not weight density ) to obtain a first approximation of its mass . these mass values can then be used in Newtons
17、 equation.How will we know whether our chosen sizes and shapes of links are even acceptable, let alone optimal unfortunately , we will not know untill we have carried the computations all the way through a complete stress and deflection analysis of the parts. It it often the case ,especially with lo
18、ng , thin elements such as shafts or slender links , that the deflections of the parts, redesign them ,and repeat the force ,stress ,and deflection analysis . design is , unavoidably ,an iterative process .It is also worth nothing that ,unlike a static force situation in which a failed design might
19、be fixed by adding more mass to the part to strenthen it ,to do so in a dynamic force situation can have a deleterious effect . more mass with the same acceleration will generate even higher forces and thus higher stresses ! the machine desiger often need to remove mass (in the right places) form pa
20、rts in order to reduce the stesses and deflections due to F=ma, thus the designer needs to have a good understanding of both material properties and stess and deflection analysis to properlyshape and size parts for minimum mass while maximzing the strength and stiffness needed to withstand the dynam
21、ic forces.One of the primary considerations in designing any machine or strucre is that the strength must be sufficiently greater than the stress to assure both safety and reliability. To assure that mechanical parts do not fail in service ,it is necessary to learn why they sometimes do fail. Then w
22、e shall be able to relate the stresses with the strenths to achieve safety .Ideally, in designing any machine element,the engineer should have at his disposal should have been made on speciments having the same heat treatment ,surface roughness ,and size as the element he prosses to design ;and the
23、tests should be made under exactly the same loading conditions as the part will experience in service . this means that ,if the part is to experience a bending and torsion,it should be tested under combined bending and torsion. Such tests will provide very useful and precise information . they tell
24、the engineer what factor of safety to use and what the reliability is for a given service life .whenever such data are available for design purposes,the engineer can be assure that he is doing the best justified if failure of the part may endanger human life ,or if the part is manufactured in suffic
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机械 专业 外文 文献 翻译 机械运动 动力学
